Skip to main content
Log in

RETRACTED ARTICLE: IL-18 genetic polymorphisms may contribute to the pathogenesis of tuberculosis among Asians: a meta-analysis of case–control studies

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This article was retracted on 18 August 2015

Abstract

This current meta-analysis of case–control studies was continued to investigate whether the genetic polymorphisms of IL-18 gene contribute to the occurrence and progression of tuberculosis (TB). We searched certain English and Chinese databases for relevant studies without language restrictions. Meta-analysis for the moment was performed with the adoption of the STATA statistical software. Crude OR and its corresponding 95 % confidence interval (95 % CI) were calculated as estimates of relative risk for UC under different genetic models. Seven case–control studies (TB patients = 1,325, healthy subjects = 1,778) were included for the following analysis. We evaluated two functional polymorphisms (rs1946518 C>A and rs187238 G>C). Pooled OR within the progression of statistical analysis indicated that the specific polymorphism of IL-18 rs1946518 C>A showed a closely relationship with the elevated susceptibility to TB under those three genetic models (allele model: OR 1.24, 95 % CI 1.11–1.38, P < 0.001; dominant model: OR 1.41, 95 % CI 1.21–1.65, P < 0.001; homozygous model: OR 1.46, 95 % CI 1.15–1.86, P = 0.002; respectively). However, we observed no statistical associations of the IL-18 rs187238 G>C polymorphism with the susceptibility to TB under any of the genetic models (all P > 0.05). Country-stratified analysis results detected that the variants of IL-18 may be strongly enrolled in the risk of TB among populations in China (allele model: OR 1.19, 95 % CI 1.06–1.33, P = 0.003; recessive model: OR 1.54, 95 % CI 1.00–2.36, P = 0.048; homozygous model: OR 1.59, 95 % CI 1.09–2.33, P = 0.016; respectively), but not among populations in Iran, Korea and India (all P > 0.05). Current results provide strong evidence that IL-18 mutations may be evidently related to the occurrence and development of TB, especially for the rs1946518 C>A polymorphism among populations in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Click ES, Moonan PK, Winston CA, Cowan LS, Oeltmann JE (2012) Relationship between Mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis 54:211–219. doi:10.1093/cid/cir788

    Article  PubMed  Google Scholar 

  2. Lin PL, Flynn JL (2010) Understanding latent tuberculosis: a moving target. J Immunol 185:15–22. doi:10.4049/jimmunol.0903856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vitoria M, Granich R, Gilks CF, Gunneberg C, Hosseini M, Were W, Raviglione M, De Cock KM (2009) The global fight against HIV/AIDS, tuberculosis, and malaria: current status and future perspectives. Am J Clin Pathol 131:844–848. doi:10.1309/AJCP5XHDB1PNAEYT

    Article  PubMed  Google Scholar 

  4. Oxlade O, Schwartzman K, Behr MA, Benedetti A, Pai M, Heymann J, Menzies D (2009) Global tuberculosis trends: a reflection of changes in tuberculosis control or in population health? Int J Tuberc Lung Dis 13:1238–1246. http://www.ncbi.nlm.nih.gov/pubmed/19793428

  5. Murray M, Oxlade O, Lin HH (2011) Modeling social, environmental and biological determinants of tuberculosis. Int J Tuberc Lung Dis 15(Suppl 2):S64–S70. doi:10.5588/ijtld.10.0535

    Article  PubMed  Google Scholar 

  6. Das R, Koo MS, Kim BH, Jacob ST, Subbian S, Yao J, Leng L, Levy R et al (2013) Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:E2997–E3006. doi:10.1073/pnas.1301128110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Narasimhan P, Wood J, Macintyre CR, Mathai D (2013) Risk factors for tuberculosis. Pulm Med 2013:828939. doi:10.1155/2013/828939

    Article  PubMed Central  PubMed  Google Scholar 

  8. Li DD, Jia LQ, Guo SJ, Shen YC, Wen FQ (2013) Interleukin-18 promoter gene −607C/A polymorphism and tuberculosis risk: a meta-analysis. Chin Med J (Engl) 126:3360–3363. http://www.ncbi.nlm.nih.gov/pubmed/24033965

  9. Harishankar M, Selvaraj P, Rajeswari DN, Anand SP, Narayanan PR (2007) Promoter polymorphism of IL-18 gene in pulmonary tuberculosis in South Indian population. Int J Immunogenet 34:317–320. doi:10.1111/j.1744-313X.2007.00714.x

    Article  CAS  PubMed  Google Scholar 

  10. Palladino I, Salani F, Ciaramella A, Rubino IA, Caltagirone C, Fagioli S, Spalletta G, Bossu P (2012) Elevated levels of circulating IL-18BP and perturbed regulation of IL-18 in schizophrenia. J Neuroinflamm 9:206. doi:10.1186/1742-2094-9-206

    Article  CAS  Google Scholar 

  11. Taheri M, Hashemi-Shahri SM, Hamzehnejadi M, Naderi M, Moazeni-Roodi A, Bahari G, Hashemi M (2012) Lack of association between interleukin-18 −607 C/A gene polymorphism and pulmonary tuberculosis in Zahedan, southeast Iran. Prague Med Rep 113:16–22. http://www.ncbi.nlm.nih.gov/pubmed/22373801

  12. Schneider BE, Korbel D, Hagens K, Koch M, Raupach B, Enders J, Kaufmann SH, Mittrucker HW et al (2010) A role for IL-18 in protective immunity against mycobacterium tuberculosis. Eur J Immunol 40:396–405. doi:10.1002/eji.200939583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lee SH, Choi IH, Jeon YK, Park SJ, Lee HK, Lee YM, Chang CL, Kim YS et al (2011) Association between the interleukin-18 promoter polymorphism and pulmonary tuberculosis in a Korean population. Int J Tuberc Lung Dis 15:1246–1251. doi:10.5588/ijtld.11.0031

    Article  CAS  PubMed  Google Scholar 

  14. Moller M, Nebel A, van Helden PD, Schreiber S, Hoal EG (2010) Analysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis: a case–control association study. BMC Infect Dis 10:154. doi:10.1186/1471-2334-10-154

    Article  PubMed Central  PubMed  Google Scholar 

  15. Biet F, Locht C, Kremer L (2002) Immunoregulatory functions of interleukin 18 and its role in defense against bacterial pathogens. J Mol Med (Berl) 80:147–162. doi:10.1007/s00109-001-0307-1

    Article  CAS  Google Scholar 

  16. Lee HM, Park SA, Chung SW, Woo JS, Chae SW, Lee SH, Kang HJ, Hwang SJ (2006) Interleukin-18/-607 gene polymorphism in allergic rhinitis. Int J Pediatr Otorhinolaryngol 70:1085–1088. doi:10.1016/j.ijporl.2005.11.006

    Article  PubMed  Google Scholar 

  17. Kalina U, Ballas K, Koyama N, Kauschat D, Miething C, Arnemann J, Martin H, Hoelzer D et al. (2000) Genomic organization and regulation of the human interleukin-18 gene. Scand J Immunol 52:525–530. http://www.ncbi.nlm.nih.gov/pubmed/11119255

  18. Han M, Yue J, Lian YY, Zhao YL, Wang HX, Liu LR (2011) Relationship between single nucleotide polymorphism of interleukin-18 and susceptibility to pulmonary tuberculosis in the Chinese Han population. Microbiol Immunol 55:388–393. doi:10.1111/j.1348-0421.2011.00332.x

    Article  CAS  PubMed  Google Scholar 

  19. Lai YB, Chen DS (2013) Asociation of IL-18 promoter polymorphisms with susceptibility to tuberculosis in Han of Jieyang. Guangdong Med J 34:2553–2555

    CAS  Google Scholar 

  20. Liang ZH, Ynag H, Feng TJ, Wang F, Xu XP (2009) Relationship between polymorphisms of interleukin-18 gene promoyer region and susceptibility to pulmonary tuberculosis. J Pract Med 25:2939–2941

    CAS  Google Scholar 

  21. Stang A (2010) Critical evaluation of the Newcastle–Ottawa Scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. doi:10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  22. Zintzaras E, Ioannidis JP (2005) Hegesma: genome search meta-analysis and heterogeneity testing. Bioinformatics 21:3672–3673. doi:10.1093/bioinformatics/bti536

    Article  CAS  PubMed  Google Scholar 

  23. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006) Comparison of two methods to detect publication bias in meta-analysis. JAMA 295:676–680. doi:10.1001/jama.295.6.676

    Article  CAS  PubMed  Google Scholar 

  24. Zhou C, Jiang LP, Wang CY, Zhu ZM, Xie YY, Liu W, Lu B, Yang XQ (2008) Asociation of IL-18 promoter polymorphisms with susceptibility to tuberculosis and its protein production in chongqin han children. J Chongqing Med Univ 33:1029–1033+1037

  25. Yamada G, Shijubo N, Shigehara K, Okamura H, Kurimoto M, Abe S (2000) Increased levels of circulating interleukin-18 in patients with advanced tuberculosis. Am J Respir Crit Care Med 161:1786–1789. doi:10.1164/ajrccm.161.6.9911054

    Article  CAS  PubMed  Google Scholar 

  26. Sher A, Coffman RL (1992) Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol 10:385–409. doi:10.1146/annurev.iy.10.040192.002125

    Article  CAS  PubMed  Google Scholar 

  27. Wong JL, Mailliard RB, Moschos SJ, Edington H, Lotze MT, Kirkwood JM, Kalinski P (2011) Helper activity of natural killer cells during the dendritic cell-mediated induction of melanoma-specific cytotoxic T cells. J Immunother 34:270–278. doi:10.1097/CJI.0b013e31820b370b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F (2011) Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog 7:e1002452. doi:10.1371/journal.ppat.1002452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yoshimoto T, Takeda K, Tanaka T, Ohkusu K, Kashiwamura S, Okamura H, Akira S, Nakanishi K (1998) IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol 161:3400–3407. http://www.ncbi.nlm.nih.gov/pubmed/9759857

  30. Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310. doi:10.1155/2011/405310

    Article  PubMed Central  PubMed  Google Scholar 

  31. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422. doi:10.1146/annurev.immunol.021908.132703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the helpful comments on this paper received from our reviewers.

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ling Yu.

Additional information

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XL., Zhao, F., Zhang, J. et al. RETRACTED ARTICLE: IL-18 genetic polymorphisms may contribute to the pathogenesis of tuberculosis among Asians: a meta-analysis of case–control studies. Mol Biol Rep 41, 6013–6023 (2014). https://doi.org/10.1007/s11033-014-3479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3479-9

Keywords

Navigation