Molecular Biology Reports

, Volume 41, Issue 7, pp 4493–4505 | Cite as

Long non-coding RNAs: new players in ocular neovascularization



Pathological neovascularization are the most prevalent causes of moderate or severe vision loss. Long non-coding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules involved in numerous biological processes and complicated diseases. However, the role of lncRNAs in ocular neovascularization is still unclear. Here, we constructed a murine model of ocular neovascularization, and determined lncRNA expression profiles using microarray analysis. We identified 326 or 51 lncRNAs that were significantly either up-regulated or down-regulated in the vaso-obliteration or neovascularization phase, respectively. Based on Pearson correlation analysis, lncRNAs/mRNAs co-expression networks were constructed. GO enrichment analysis of lncRNAs-co-expressed mRNAs indicated that the biological modules were correlated with chromosome organization, extracellular region and guanylate cyclase activator activity in the vaso-obliteration phase, and correlated with cell proliferation, extracellular region and guanylate cyclase regulator activity in the neovascularization phase. KEGG pathway analysis indicated that MAPK signaling was the most significantly enriched pathway in both phases. Importantly, Vax2os1 and Vax2os2 were not only dynamically expressed in the vaso-obliteration and neovascularization phases, but also significantly altered in the aqueous humor of patients with neovascular age-related macular degeneration (AMD), suggesting a potential role of lncRNAs in the regulation of ocular neovascularization. Taken together, this study provided novel insights into the molecular pathogenesis of ocular neovascularization. The intervention of dysregulated lncRNA could become a potential target for the prevention and treatment of ocular vascular diseases.


Long non-coding RNA Ocular neovascularization Microarray analysis Age-related macular degeneration 



This work was generously supported by grants from the National Natural Science Foundation of China (Grant No. 81300241 to B.Y. and Grant No. 81371055 to Q.J.), grants from the National clinical key construction project [Grant No. (2012) 649 to Q.J.], and grants from the Medical Science and Technology Development Project Fund of Nanjing (Grant No. ZKX 12047 to Q.J., Grant No. YKK12207 to G.F.-C., and Grant No. YKK12208 to J.Y.).

Supplementary material

11033_2014_3320_MOESM1_ESM.xls (90 kb)
Table S1: Differentially expressed lncRNAs between P12 and P7 experimental group (XLS 90 kb)
11033_2014_3320_MOESM2_ESM.xls (30 kb)
Table S2: Differentially expressed lncRNAs between P17 and P12 experimental group (XLS 30 kb)
11033_2014_3320_MOESM3_ESM.xls (42 kb)
Table S3: Differentially expressed lncRNAs between P17 and P7 experimental group (XLS 42 kb)
11033_2014_3320_MOESM4_ESM.xls (16 kb)
Table S4: Common differentially expressed lncRNAs among the three experimental groups (XLS 16 kb)
11033_2014_3320_MOESM5_ESM.xls (67 kb)
Table S5: Correlation analysis between the differential expressed lncRNAs and mRNAs (P12 vs. P7) (XLS 67 kb)
11033_2014_3320_MOESM6_ESM.xls (58 kb)
Table S6: Correlation analysis between the differential expressed lncRNAs and mRNAs (P17 vs. P12) (XLS 57 kb)


  1. 1.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Qazi Y, Maddula S, Ambati BK (2009) Mediators of ocular angiogenesis. J Genet 88:495–515PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Campochiaro PA (2013) Ocular neovascularization. J Mol Med 91:311–321PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Rajappa M, Saxena P, Kaur J (2010) Ocular angiogenesis: mechanisms and recent advances in therapy. Adv Clin Chem 50:103–121CrossRefPubMedGoogle Scholar
  5. 5.
    de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12:833–845PubMedGoogle Scholar
  6. 6.
    Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361CrossRefPubMedGoogle Scholar
  7. 7.
    Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7:582–585PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7:200–210CrossRefPubMedGoogle Scholar
  10. 10.
    Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111PubMedGoogle Scholar
  11. 11.
    Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, Skogerbø G, Wu Z, Zhao Y (2011) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39:3864–3878PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    da Huang W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:W169–W175PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24:238–241PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29:2928–2930PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Meola N, Pizzo M, Alfano G, Surace EM, Banfi S (2012) The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA 18:111–123PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21:203–215PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Rapicavoli NA, Poth EM, Blackshaw S (2010) The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 10:49PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Rapicavoli NA, Poth EM, Zhu H, Blackshaw S (2011) The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev 6:1–15CrossRefGoogle Scholar
  19. 19.
    Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Löfqvist C, Hellström A, Smith LE (2010) The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 51:2813–2826PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Grossniklaus HE, Kang SJ, Berglin L (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Bergmann JH, Spector DL (2014) Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 26:10–18CrossRefPubMedGoogle Scholar
  23. 23.
    Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23:1921–1926CrossRefPubMedGoogle Scholar
  24. 24.
    Garthwaite J (2010) New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol Cell Biochem 334:221–232CrossRefPubMedGoogle Scholar
  25. 25.
    Armstrong D, Ueda T, Ueda T, Aljada A, Browne R, Fukuda S, Spengler R, Chou R, Hartnett M, Buch P, Dandona P, Sasisekharan R, Dorey CK (1998) Lipid hydroperoxide stimulates retinal neovascularization in rabbit retina through expression of tumor necrosis factor-α, vascular endothelial growth factor and platelet-derived growth factor. Angiogenesis 2:93–104CrossRefPubMedGoogle Scholar
  26. 26.
    Zou H, Otani A, Oishi A, Yodoi Y, Kameda T, Kojima H, Yoshimura N (2010) Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice. Biochem Biophys Res Commun 391:1268–1273CrossRefPubMedGoogle Scholar
  27. 27.
    Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405CrossRefPubMedGoogle Scholar
  28. 28.
    Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633CrossRefPubMedGoogle Scholar
  29. 29.
    Boyd PJ, Doyle J, Gee E, Pallan S, Haas TL (2005) MAPK signaling regulates endothelial cell assembly into networks and expression of MT1-MMP and MMP-2. Am J Physiol Cell Physiol 288:C659–C668CrossRefPubMedGoogle Scholar
  30. 30.
    Stenzel D, Lundkvist A, Sauvaget D, Busse M, Graupera M, van der Flier A, Wijelath ES, Murray J, Sobel M, Costell M, Takahashi S, Fässler R, Yamaguchi Y, Gutmann DH, Hynes RO, Gerhardt H (2011) Integrin-dependent and-independent functions of astrocytic fibronectin in retinal angiogenesis. Development 138:4451–4463PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Vallabhapurapu S, Karin M (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 27:693–733CrossRefPubMedGoogle Scholar
  32. 32.
    Sethi G, Sung B, Aggarwal BB (2008) Nuclear factor-κB activation: from bench to bedside. Exp Biol Med (Maywood) 233:21–31CrossRefGoogle Scholar
  33. 33.
    Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708CrossRefPubMedGoogle Scholar
  34. 34.
    You J–J, Yang C-H, Yang C-M, Chen M-S (2013) Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin ανβ3, FAK, PI3 K/Akt, and NF-κB pathways in retinal vascular endothelial cells. Cell Signal 26(1):133–140CrossRefPubMedGoogle Scholar
  35. 35.
    Kaarniranta K, Salminen A (2009) NF-κB signaling as a putative target for ω-3 metabolites in the prevention of age-related macular degeneration (AMD). Exp Gerontol 44:685–688CrossRefPubMedGoogle Scholar
  36. 36.
    Sjakste N, Bielskiene K, Bagdoniene L, Labeikyte D, Gutcaits A, Vassetzky Y, Sjakste T (2012) Tightly bound to DNA proteins: possible universal substrates for intranuclear processes. Gene 492:54–64CrossRefPubMedGoogle Scholar
  37. 37.
    Tian Y, Simanshu DK, Ascano M, Diaz-Avalos R, Park AY, Juranek SA, Rice WJ, Yin Q, Robinson CV, Tuschl T, Patel DJ (2011) Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat Struct Mol Biol 18:658–664PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Scheller N, Resa-Infante P, de la Luna S, Galao RP, Albrecht M, Kaestner L, Lipp P, Lengauer T, Meyerhans A, Díez J (2007) Identification of PatL1, a human homolog to yeast P body component Pat1. Biochim Biophys Acta 1773:1786–1792CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Eye HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations