Advertisement

Molecular Biology Reports

, Volume 41, Issue 7, pp 4329–4339 | Cite as

Population structure and genetic diversity analysis of Indian and exotic rice (Oryza sativa L.) accessions using SSR markers

  • B. Kalyana Babu
  • Vimla Meena
  • Vasudha Agarwal
  • P. K. Agrawal
Article

Abstract

In order to understand the population structure and genetic diversity among a set of 82 rice genotypes collected from different parts of the Asian countries including India were characterized using 39 microsatellite loci. The Population structure analysis suggested that the optimum number of subpopulations was four (K = 4) among the rice genotypes, whereas phylogenetic analysis grouped them into three populations. The results obtained from phylogenetic and STRUCTURE analysis proved to be very powerful for the differentiation of rice genotypes based on their place of origin. The genetic diversity analysis using 39 SSR loci yielded 183 scorable alleles, out of which 182 alleles were observed to be polymorphic with an average of 4.8 alleles per locus. The Polymorphism Information Content (PIC) values for all the polymorphic primers across 82 rice genotypes varied from 0.02 to 0.77, with an average of 0.50. Gene diversity (He) was found to be in the range of 0.02 (RM484) to 0.80 (OSR13) with an average value of 0.55, while heterozygosity (Ho) was observed with an average of 0.07, ranging from 0.01 (RM334) to 0.31 (RM316). The present study resulted in identification of seven highly polymorphic SSR loci viz., OSR13, RM152, RM144, RM536, RM489, RM259 and RM271 based on the parameters like PIC value (≥0.70), gene diversity (≥0.71), and polymorphic alleles (≥6). These seven polymorphic primers can effectively be used in further molecular breeding programs and QTL mapping studies of rice since they exhibited very high polymorphism over other loci. SSR analysis resulted in a more definitive separation of clustering of genotypes indicating a higher level of efficiency of SSR markers for the accurate determination of relationships between accessions.

Keywords

Rice Population structure SSR Gene diversity Polymorphism information content (PIC) 

References

  1. 1.
    ICAR (2011-12) Annual report. Vivekananda Parvatiya Krishi Anusanthan Sansthan, AlmoraGoogle Scholar
  2. 2.
    Juliano BO (1985) Rice chemistry and technology. American Association of Cereal Chemists, Minnesota, p 757Google Scholar
  3. 3.
    Chaudhary RC, Tran DV (2001) Speciality rices of the world-a prologue. In: Chaudhary RC, Tran DV (eds) Speciality rices of the world: breeding, production and marketing. FAO, Rome; Oxford and IBH Publishing, New Delhi, pp 3–14Google Scholar
  4. 4.
    Zhang MW, Guo BJ, Chi JW, Wei ZC, Xu ZH, Zhang Y, Zhang RF (2005) Antioxidants and their correlation with total flavonoid and anthocyanin contents in different black rice varieties. Sci Agric Sin 38(7):1324–1331Google Scholar
  5. 5.
    Cooke RJ (1995) Variety identification of crop plants. In: Skerrit JH, Appels R (eds) New diagnostics in crop science. Biotechnology in Agriculture no. 13. CAB International, Wallingford, pp 33–63Google Scholar
  6. 6.
    Sun CQ, Wang XK, Li ZC, Yoshimura A, Iwata N (2001) Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet 102(1):157–162CrossRefGoogle Scholar
  7. 7.
    Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1991) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535CrossRefGoogle Scholar
  8. 8.
    Gao LZ, Zhang CH, Chang LP, Jia JZ, Qiu ZE, Dong YS (2005) Microsatellite diversity of Oryza sativa with emphasis on indica-japonica divergence. Genet Res 85:1–14CrossRefPubMedGoogle Scholar
  9. 9.
    Aggarwal RK, Brar DS, Nandi S, Huang N, Khush GS (1999) Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet 98:1320–1328CrossRefGoogle Scholar
  10. 10.
    Smith JSC, Chin ECL, Shu H, Smith OS, Well SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173CrossRefGoogle Scholar
  11. 11.
    Heckenberger M, Bohn M, Ziegle JS, Joe LK, Hauser JD, Hutton M, Melchinger AE (2002) Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties. Mol Breed 10:181–191CrossRefGoogle Scholar
  12. 12.
    Sharon EM, Kresovich S, Jester CA, Hernandez CJ, Szewc-McFadden AK (1997) Application of multiplex PCR and fluorescence-based, semi-automated allele sizing technology for genotyping plant genetic resources. Crop Sci 37:617–624CrossRefGoogle Scholar
  13. 13.
    Depeige A, Goubely C, Lenoir A, Cocherel S, Picard G, Raynal M, Grellet F, Delseny M (1995) Identification of the most represented repeated motifs in Arabidopsis thaliana microsatellite loci. Theor Appl Genet 91:160–168Google Scholar
  14. 14.
    Roder MS, Plaschke J, Konig SU, Borner A, Sorrels ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333CrossRefPubMedGoogle Scholar
  15. 15.
    Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889CrossRefPubMedGoogle Scholar
  16. 16.
    Olufowote JO, Xu Y, Chen X, Park WD, Beachel HM, Dilday RH, Goto M, McCouch SR (1997) Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome 40:370–378CrossRefPubMedGoogle Scholar
  17. 17.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  18. 18.
    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  19. 19.
    Herrera TG, Duque DP, Almeida IP, Núñez GT, Pieters AJ, Martinez CP, Tohme JM (2008) Assessment of genetic diversity in Venezuelan rice cultivars using simple sequence repeats markers. Electron J Biotechnol 11(5)Google Scholar
  20. 20.
    Agrawal PK, Katiyar AK (2008) Validation of chickpea-STMS markers and DNA fingerprinting in lentil (Lens culinaris subsp. culinaris) cultivars of India. Indian J Genet 68(2):149–156Google Scholar
  21. 21.
    Rohlf FJ (1997) NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.0. State University of New York, New YorkGoogle Scholar
  22. 22.
    Jaccard P (1908) Nouvelles recherches sur la distribuition florale. Bull Soc Vaud Nat 44:223–270Google Scholar
  23. 23.
    Gawel NJ, Jarret RL (1991) A modified CTAB DNA extraction procedure for Musa and Ipomoea plant. Mol Biol Rep 9:262–266CrossRefGoogle Scholar
  24. 24.
    Tang S, Zhang Y, Zeng L, Luo L, Zhong Y, Geng Y (2010) Assessment of genetic diversity and relationships of upland rice accessions from southwest China using microsatellite markers. Plant Biosyst 144(1):85–92CrossRefGoogle Scholar
  25. 25.
    Narvel JM, Fehr WR, Chu WC, Grant D, Shoemaker RC (2000) Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci 40:1452–1458CrossRefGoogle Scholar
  26. 26.
    Liu K, Muse SV (2005) Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129CrossRefPubMedGoogle Scholar
  27. 27.
    Siwach P, Jain S, Saini N, Chowdhury VK, Jain RK (2004) Allelic diversity among Basmati and non-Basmati long-grain indica rice varieties using microsatellite markers. J Plant Biochem Biotechnol 13:25–32CrossRefGoogle Scholar
  28. 28.
    Aranzana MJ, Abbasi E, Howard W, Arus P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Pritchard JK, Wen W (2003) Documentation for the structure software, version 2. Department of Human Genetics, University of Chicago, Chicago. http://pritch.bsd.uchicago.edu/software
  30. 30.
    Michael JT, Nicholas RP, Joko PKR, Trijatmiko, Tiur SS, McCouch SusanR (2009) Genetic diversity of isolated populations of Indonesian landraces of Rice (Oryza sativa L.) collected in east Kalimantan on the Island of Borneo. Rice 2:80–92CrossRefGoogle Scholar
  31. 31.
    Xinghua W, Yuan X, Yu H, Wang Y, Qun Xu, Tang S (2009) Temporal changes in SSR allelic diversity of major rice cultivars in China. J Genet Genom 36:363–370CrossRefGoogle Scholar
  32. 32.
    Chakravarthi B, Rambabu N (2006) SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa. L). Afr J Biotechol 5(9):684–688Google Scholar
  33. 33.
    Ravi M, Geethanjalil S, Sameeyafarheen F, Maheswaran M (2003) Molecular marker based genetic diversity analysis in rice (Oryza sativa L.) using RAPD and SSR markers. Euphytica 133:243–252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • B. Kalyana Babu
    • 1
  • Vimla Meena
    • 1
  • Vasudha Agarwal
    • 1
  • P. K. Agrawal
    • 1
  1. 1.Division of Crop Improvement, Vivekananda Institute of Hill Agriculture VPKASIndian Council of Agricultural Research (ICAR)AlmoraIndia

Personalised recommendations