Molecular Biology Reports

, Volume 41, Issue 6, pp 4031–4041 | Cite as

Regulatory effect of AMP-activated protein kinase on pulmonary hypertension induced by chronic hypoxia in rats: in vivo and in vitro studies

  • Xiaoying Huang
  • Rong Fan
  • Yuanyuan Lu
  • Chang Yu
  • Xiaomei Xu
  • Xie Zhang
  • Panpan Liu
  • Shuangquan Yan
  • Chun Chen
  • Liangxing Wang


Activation of AMP-activated protein kinase (AMPK) plays an important role in cardiovascular protection. It can inhibit arterial smooth muscle cell proliferation and cardiac fibroblast collagen synthesis induced by anoxia. However, the role of AMPK-dependent signalling cascades in the pulmonary vascular system is currently unknown. This study aims to determine the effects of AMPK on pulmonary hypertension and pulmonary vessel remodelling induced by hypoxia in rats using in vivo and in vitro studies. In vivo study: pulmonary hypertension, right ventricular hypertrophy and pulmonary vascular remodelling were found in hypoxic rats. Meanwhile, AMPKα1 and phosphorylated AMPKα1 were increased markedly in pulmonary arterioles and lung tissues. Mean pulmonary arterial pressure, index of right ventricular hypertrophy and parameters of pulmonary vascular remodelling, including vessel wall area/total area, density of nuclei in medial smooth muscle cells, and thickness of the medial smooth muscle cell layer were markedly suppressed by AICAR, an AMPK agonist. In vitro study: the expression of AMPKα1 and phosphorylated AMPKα1 was increased in pulmonary artery smooth muscle cells (PASMCs) under hypoxic conditions. The effects of PASMC proliferation stimulated by hypoxia were reinforced by treatment with Compound C, an AMPK inhibitor. AICAR inhibited the proliferation of PASMCs stimulated by hypoxia. These findings suggest that AMPK is involved in the formation of hypoxia-induced pulmonary hypertension and pulmonary vessel remodelling. Up-regulating AMPK can contribute to decreasing pulmonary vessel remodelling and pulmonary hypertension induced by hypoxia.


AMP-activated protein kinase (AMPK) Hypoxia Pulmonary hypertension Vessel remodelling Pulmonary artery smooth muscle cells (PASMCs) 5-Aminoimidazole-4-carboxamide riboside (AICAR) 



This study was supported by Zhejiang Provincial Natural Science Foundation of China (No. LY13H010003), The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Liangxing Wang was sponsored by Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents.


  1. 1.
    Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ et al (2004) Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 68:75–103CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O et al (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol 285:L740–L754Google Scholar
  3. 3.
    Michelakis ED, Mcmurtry MS, Wu XC, Dyck JR, Moudgil R et al (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250CrossRefPubMedGoogle Scholar
  4. 4.
    McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A et al (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 115:1479–1491PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Courboulin A, Barrier M, Perreault T, Bonnet P, Tremblay VL, Paulin R et al (2012) Plumbagin reverses proliferation and resistance to apoptosis in experimental PAH. Eur Respir J 40(3):618–629CrossRefPubMedGoogle Scholar
  6. 6.
    Wang Y, Gao E, Tao L, Lau WB, Yuan Y et al (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119:835–844PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kim AS, Miller EJ, Young LH (2009) AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf) 196:37–53CrossRefGoogle Scholar
  8. 8.
    Ewart MA, Kennedy S (2011) AMPK and vasculoprotection. Pharmacol Ther 131:242–253CrossRefPubMedGoogle Scholar
  9. 9.
    Liang KW, Yin SC, Ting CT, Lin SJ, Hsueh CM et al (2008) Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharmacol 590:343–354CrossRefPubMedGoogle Scholar
  10. 10.
    Nagata D, Kiyosue A, Takahashi M, Satonaka H, Tanaka K et al (2009) A new constitutively active mutant of AMP-activated protein kinase inhibits anoxia-induced apoptosis of vascular endothelial cell. Hypertens Res 32:133–139CrossRefPubMedGoogle Scholar
  11. 11.
    Liu C, Liang B, Wang Q, Wu J, Zou MH (2010) Activation of AMP-activated protein kinase alpha1 alleviates endothelial cell apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin. J Biol Chem 285:15346–15355PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Villarreal F, Epperson SA, Ramirez-Sanchez I, Yamazaki KG, Brunton LL (2009) Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. Am J Physiol Cell Physiol 296:1178–1184CrossRefGoogle Scholar
  13. 13.
    Sun P, Liu WL (1984) Method for measuring pulmonary artery pressure by right cardiac catheter in rats. ACTA Acad Med Sin 6:465–466Google Scholar
  14. 14.
    Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7:512–518CrossRefPubMedGoogle Scholar
  15. 15.
    Song P, Wang S, He C, Wang S, Liang B et al (2011) AMPKα2 deletion exacerbates neointima formation by upregulating Skp2 in vascular smooth muscle cells. Circ Res 109:1230–1239PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Sung JY, Choi HC (2012) Nifedipine inhibits vascular smooth muscle cell proliferation and reactive oxygen species production through AMP-activated protein kinase signaling pathway. Vasc Pharmacol 56:1–8CrossRefGoogle Scholar
  17. 17.
    Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346:659–669PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Ruiz A, Liu Y, Xu X, Carlson M (2012) Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Proc Natl Acad Sci USA 109:8652–8657PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hawley SA, Davison M, Woods A, Davies SP, Beri RK et al (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887CrossRefPubMedGoogle Scholar
  20. 20.
    Hurley RL, Barré LK, Wood SD, Anderson KA, Kemp BE, Means AR et al (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 281:36662–36672CrossRefPubMedGoogle Scholar
  21. 21.
    Chen L, Wang J, Zhang YY, Yan SF, Neumann D et al (2012) AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nat Struct Mol Biol 19:716–718CrossRefPubMedGoogle Scholar
  22. 22.
    Frederich M, Balschi JA (2002) The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart. J Biol Chem 277:1928–1932CrossRefPubMedGoogle Scholar
  23. 23.
    Emerling BM, Weinberg F, Snyder C, Burqess Z, Mutlu GM et al (2009) Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med 46:1386–1391PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N et al (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435CrossRefPubMedGoogle Scholar
  25. 25.
    Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D et al (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 31:3531–3545PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Robertson TP, Mustard KJ, Lewis TH, Clark JH, Wyatt CN et al (2008) AMP-activated protein kinase and hypoxic pulmonary vasoconstriction. Eur J Pharmacol 595:39–43PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Tang C, To WK, Meng F, Wang Y, Gu Y (2010) A role for receptor-operated Ca2+ entry in human pulmonary artery smooth muscle cells in response to hypoxia. Physiol Res 59:909–918PubMedGoogle Scholar
  28. 28.
    Ki SH, Lee JW, Lim SC, Hien TT, Im JH et al (2012) Protective effect of nectandrin B, a potent AMPK activator on neointima formation: Inhibition of Pin1 expression through AMPK activation. Br J Pharmacol 168(4):932–945CrossRefGoogle Scholar
  29. 29.
    Chandra SM, Razavi H, Kim J, Agrawal R, Kundu RK et al (2011) Disruption of the apelin–APJ system worsens hypoxia-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol 31:814–820PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Bradley EA, Eringa EC, Stehouwer CD, Korstjens I, van Nieuw Amerongen GP et al (2010) Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol 30:1137–1142CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Z, Peng IC, Sun W, Su MI, Hsu PH et al (2009) AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Mol Med 104:496–505Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xiaoying Huang
    • 1
  • Rong Fan
    • 2
  • Yuanyuan Lu
    • 1
  • Chang Yu
    • 3
  • Xiaomei Xu
    • 1
  • Xie Zhang
    • 1
  • Panpan Liu
    • 1
  • Shuangquan Yan
    • 1
  • Chun Chen
    • 4
  • Liangxing Wang
    • 1
  1. 1.Division of Pulmonary MedicineFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  2. 2.Division of Pulmonary MedicineJiangdu People’s HospitalYangzhouChina
  3. 3.Division of RadiologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  4. 4.Division of Pulmonary MedicineZhejiang People’s HospitalHangzhouChina

Personalised recommendations