Molecular Biology Reports

, Volume 41, Issue 5, pp 3521–3527 | Cite as

Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization

  • E. Rostami
  • S. Kashanian
  • A. H. Azandaryani


The aim of this work was to produce and characterize solid lipid nanoparticles (SLN) containing levothyroxine sodium for oral administration, and to evaluate the kinetic release of these colloidal carriers. SLNs were prepared by microemulsion method. The particle size and zeta potential of levothyroxine sodium-loaded SLNs were determined to be around 153 nm,−43 mV (negatively charged), respectively by photon correlation spectroscopy. The levothyroxine entrapment efficiency was over 98 %. Shape and surface morphology were determined by TEM and SEM. They revealed fairly spherical shape of nanoparticles.SLN formulation was stable over a period of 6 months. There were no significant changes in particle size, zeta potential and polydispersity index and entrapment efficiency, indicating that the developed SLNs were fairly stable.


Solid lipid nanoparticle Levothyroxine sodium Microemulsion Kinetic release 


  1. 1.
    Alexander KS, Kothapalli MR, Dollimor D (1997) Stability of an extemporaneously formulated levothyroxine sodium syrup compounded from commercial tablets. Int J Pharm Compd 1(1):60–64PubMedGoogle Scholar
  2. 2.
    Ali H, El-Sayed K, Sylvester PW, Nazzal S (2010) Molecular interaction and localization of tocotrienol-rich fraction (TRF) within the matrices of lipid nanoparticles: evidence studies by differential scanning calorimetry (DSC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Colloids Surf B 77(2):286–297CrossRefGoogle Scholar
  3. 3.
    Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490CrossRefPubMedGoogle Scholar
  4. 4.
    Arza RAK, Gonugunta CSR, Veerareddy PR (2009) Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. Am Assoc Pharm Sci 1(10):220–226Google Scholar
  5. 5.
    Barzegar-Jalali M, Adibkia K, Valizadeh H, Siahi-Shadbad MR, Nokhodchi A, Omidi Y, Mohammadi G, Hallaj-Nezhadi S, Hasan M (2008) Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci 11(1):167–177PubMedGoogle Scholar
  6. 6.
    Blakesley VA (2005) Current methodology to assess bioequivalence of levothyroxine sodium products is inadequate. J Am Assoc Pharm Sci 7(1):E42–E46Google Scholar
  7. 7.
    Cavalli R, Bargoni A, Podio V, Muntoni E, Zara GP, Gasco MR (2003) Duodenal administration of solid lipid nanoparticles loaded with different percentages of Tobramycin. J Pharm Sci 92(5):1085–1094CrossRefPubMedGoogle Scholar
  8. 8.
    Chen DB, Yang TZ, Lu WL, Zhang Q (2001) In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 49(11):1444–1447CrossRefPubMedGoogle Scholar
  9. 9.
    Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13(2):123–133CrossRefPubMedGoogle Scholar
  10. 10.
    Derakhshandeh K, Erfan M, Dadashzadeh S (2007) Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: Factorial design, characterization and release kinetics. Eur J Pharm Biopharm 66(1):34–41CrossRefPubMedGoogle Scholar
  11. 11.
    Ekambaram P, Hasan-Sathali AA, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2(1):80–102Google Scholar
  12. 12.
    Elgart A, Cherniakov I, Aldouby Y, Domb AJ, Hoffman A (2012) Lipospheres and pro-nanolipospheres for delivery of poorly water soluble compounds. Chem Phys Lipids 165(4):438–453CrossRefPubMedGoogle Scholar
  13. 13.
    Freitas C, Muller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN) dispersions. Int J Pharm 168(2):221–229CrossRefGoogle Scholar
  14. 14.
    Garcia-Fuentes M, Torres D, Alonso MJ (2002) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B 27(2–3):159–168Google Scholar
  15. 15.
    Heiati H, Tawashi R, Phillips NC (1998) Solid lipid nanoparticles as drug carriers II. Plasma stability and biodistribution of solid lipid nanoparticles containing the lipophilic prodrug 3 %-azido-3 %-deoxythymidinepalmitate in mice. Int J Pharm 174(4):71–80CrossRefGoogle Scholar
  16. 16.
    Heydenreich AV, Westmeier R, Pedersen N, Poulsen HS, Kristensen HG (2003) Preparation and purification of cationic solid lipid nanospheres-effects on particle size, physical stability and cell toxicity. Int J Pharm 254(1):83–87CrossRefPubMedGoogle Scholar
  17. 17.
    Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2005) Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B 45(3–4):167–173CrossRefGoogle Scholar
  18. 18.
    Kamble MS, Vaidya KK, Bhosale AV, Chaudhari PD (2002) Solid lipid nanoparticles and nanostructure lipid carriers—an over view. Int J Pharm Chem Biol Sci 2(4):681–691Google Scholar
  19. 19.
    Kashanian S, Hemati Azandaryani A, Derakhshandeh K (2011) New surface modified solid lipid nanoparticles by using N-glutarylphosphatidylethanolamine as outer shell. Int J Nanomed 6(1–9):1–9Google Scholar
  20. 20.
    Kaura IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127(2):97–109CrossRefGoogle Scholar
  21. 21.
    Lilja JJ, Laitinen K, Neuvonen PJ (2005) Effects of grapefruit juice on the absorption of levothyroxine. Br J Clin Pharmacol 60(3):337–341PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Li XW, Lin XH, Zheng LQ, Yu L, Lv F, Zhang Q, Liu WC (2008) Effect of poly(ethylene glycol) stearate on the phase behavior of monocaprate/Tween80/water system and characterization of poly(ethylene glycol) stearate-modified solid lipid nanoparticles. Colloids Surf A 317(1–3):352–359CrossRefGoogle Scholar
  23. 23.
    Liu J, Gong T, Wang C, Zhong Z, Zhang Z (2007) Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm 340(1–2):153–162CrossRefPubMedGoogle Scholar
  24. 24.
    Mehnert W, Mader K (2001) Solid lipid nanoparticles Production, characterization and applications. Adv Drug Deliv Rev 47(2-3):165–196CrossRefPubMedGoogle Scholar
  25. 25.
    Muller RH, Mader K, Gohla K (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177CrossRefPubMedGoogle Scholar
  26. 26.
    Parhi R, Suresh P (2010) Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2(1):211–227Google Scholar
  27. 27.
    Pedersen N, Hansen S, Heydenreich AV, Kristensen HG, Poulsen HS (2006) Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 62(2):155–162CrossRefPubMedGoogle Scholar
  28. 28.
    Ruktanonchai U, Bejrapha P, Sakulkhu U, Opanasopit P, Bunyapraphatsara N, Junyaprasert V, Puttipipatkhachorn S (2009) Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. Am Assoc Pharm Sci 10(1):227–234Google Scholar
  29. 29.
    Sarmento B, Martins S, Ferreira D, Souto BE (2007) Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed 2(4):743–749Google Scholar
  30. 30.
    Singhvi G, Singh M (2011) Review: in vitro drug release characterization. Int J Pharm Stud Res 2(1):77–84Google Scholar
  31. 31.
    Üner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2(3):289–300Google Scholar
  32. 32.
    Varelas CG, Dixon DG, Steiner CA (1995) Zero-order release from biphasic polymer hydrogels. J Control Release 34(3):185–192CrossRefGoogle Scholar
  33. 33.
    Yang S, Zhu J, Lu Y, Liang B, Yang C (1999) Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 16(5):751–757CrossRefPubMedGoogle Scholar
  34. 34.
    Zara GP, Bargoni A, Cavalli R, Fundaro A, Vighetto D, Gasco MR (2002) Pharmacokinetics and tissue distribution of Idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J Pharma Sci 91(5):1324–1333CrossRefGoogle Scholar
  35. 35.
    Zhang Q, Yie G, Li Y, Yang Q, Nagai T (2000) Studies on the cyclosporin A loaded stearic acid nanoparticles. Int J Pharm 200(2):153–159CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Young Researchers and Elite ClubKermanshah Branch, Islamic Azad UniversityKermanshahIran
  2. 2.Department of Chemistry, Nanoscience and Nanotechnology Research Centre and Sensor and Biosensor Research CentreRazi UniversityKermanshahIran
  3. 3.Nano Drug Delivery Research CentreKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations