Molecular Biology Reports

, Volume 41, Issue 5, pp 3431–3443 | Cite as

A systematic proteomic analysis of NaCl-stressed germinating maize seeds

  • Ling-Bo Meng
  • Yi-Bo Chen
  • Tian-Cong Lu
  • Yue-Feng Wang
  • Chun-Rong Qian
  • Yang Yu
  • Xuan-Liang Ge
  • Xiao-Hui Li
  • Bai-Chen Wang


Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF–MS and 2-DE-MALDI-TOF–MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.


Germination Maize embryo Salt stress Proteomics 



Abscisic acid






Isoelectric focusing


Two-dimensional polyacrylamide gel electrophoresis


Matrix assisted laser desorption ionization-time of flight-mass spectrometry


Tandem mass spectrometry



This research was supported by grants from the National High-Tech Research and Development Program of China (Grant No. 2012AA10A300) and the Chinese Special Fund for Agro-scientific Research in the Public Interest (20093001-06-5).

Supplementary material

11033_2014_3205_MOESM1_ESM.doc (296 kb)
Fig. S1 The MASCOT search results for HSP68 (spot 10) (DOC 296 kb)


  1. 1.
    Aalenf R, Opsahl-Ferstad H, Linnestad C, Olsen O (1994) Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and the embryo of developing barley (Hordeum vulgare L.) seeds. Plant J 5:385–396CrossRefGoogle Scholar
  2. 2.
    Abdul Jaleel C, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 73:190–195CrossRefGoogle Scholar
  3. 3.
    Ali-Rachedi S, Bouinot D, Wagner M, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488CrossRefPubMedGoogle Scholar
  4. 4.
    Alsheikh M, Heyen B, Randall S (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889CrossRefPubMedGoogle Scholar
  5. 5.
    Bewley J, Black M (1994) Seeds: physiology of development and germination. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Bonsager B, Finnie C, Roepstorff P, Svensson B (2007) Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Proteomics 7:4528–4540CrossRefPubMedGoogle Scholar
  7. 7.
    Boyer J (1982) Plant productivity and environment. Science 218:443–448CrossRefPubMedGoogle Scholar
  8. 8.
    Cadman C, Toorop P, Hilhorst H, Finch-Savage W (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805CrossRefPubMedGoogle Scholar
  9. 9.
    Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel K, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30:373CrossRefPubMedGoogle Scholar
  10. 10.
    Chen Q, Yang L, Ahmad P, Wan X, Hu X (2011) Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Planta 233:583–592CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng L, Gao X, Li S, Shi M, Javeed H, Jing X, Yang G, He G (2010) Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol Breed 26:1–17CrossRefGoogle Scholar
  12. 12.
    Chivasa S, Simon WJ, Yu XL, Yalpani N, Slabas AR (2005) Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 5:4894–4904CrossRefPubMedGoogle Scholar
  13. 13.
    Cramer G, Bowman D (1991) Short-term leaf elongation kinetics of maize in response to salinity are independent of the root. Plant Physiol 95:965–967PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Finch-Savage W, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523CrossRefPubMedGoogle Scholar
  15. 15.
    Gallardo K, Job C, Groot S, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Gamble SC, Dunn MJ, Wheeler CH, Joiner MC, Adu-Poku A, Arrand JE (2000) Expression of proteins coincident with inducible radioprotection in human lung epithelial cells. Cancer Res 60: 2146-2151Google Scholar
  17. 17.
    Goday A, Jensen A, Culianez-Macia F, Alba M, Figueras M, Serratosa J, Torrent M, Pages M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Goldmark P, Curry J, Morris C, Walker-Simmons M (1992) Cloning and expression of an embryo-specific mRNA up-regulated in hydrated dormant seeds. Plant Mol Biol 19:433–441CrossRefPubMedGoogle Scholar
  19. 19.
    Gomez J, Sanchez-Martinez D, Stiefel V, Rigau J, Puigdomenech P, Pages M (1988) A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262–264CrossRefPubMedGoogle Scholar
  20. 20.
    Gruis D, Schulze J, Jung R (2004) Storage protein accumulation in the absence of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 16:270PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Haslek SC, Stacy R, Nygaard V, Culiá ez-Macià F, Aalen R (1998) The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy. Plant Mol Biol 36:833–845CrossRefGoogle Scholar
  22. 22.
    Haslekas C, Viken M, Grini P, Nygaard V, Nordgard S, Meza T, Aalen R (2003) Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress 1. Plant Physiol 133:1148–1157PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Heyen B, Alsheikh M, Smith E, Torvik C, Seals D, Randall S (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Hochholdinger F, Guo L, Schnable P (2004) Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Plant Mol Biol 56:397–412CrossRefPubMedGoogle Scholar
  25. 25.
    Hochholdinger F, Woll K, Guo L, Schnable PS (2005) The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Proteomics 5:4885–4893CrossRefPubMedGoogle Scholar
  26. 26.
    Huang H, Moller IM, Song SQ (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics 75:1247–1262CrossRefPubMedGoogle Scholar
  27. 27.
    Hynek R, Svensson B, Jensen O, Barkholt V, Finnie C (2009) The plasma membrane proteome of germinating barley embryos. Proteomics 9:3787–3794CrossRefPubMedGoogle Scholar
  28. 28.
    Jensen A, Goday A, Figueras M, Jessop A, Pages M (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691CrossRefPubMedGoogle Scholar
  29. 29.
    Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Kim M, Cho H, Kim D, Lee J, Pai H (2003) CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim Biophys Acta 1651:50–59CrossRefPubMedGoogle Scholar
  31. 31.
    Lee S, Chen T (1993) Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiol 101:1089–1096PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Lewis M, Miki K, Ueda T (2000) FePer 1, a gene encoding an evolutionarily conserved 1-Cys peroxiredoxin in buckwheat (Fagopyrum esculentum Moench), is expressed in a seed-specific manner and induced during seed germination. Gene 246:81–91CrossRefPubMedGoogle Scholar
  33. 33.
    Li K, Xu C, Zhang K, Yang A, Zhang J (2007) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7:1501–1512CrossRefPubMedGoogle Scholar
  34. 34.
    Liu Y, Lamkemeyer T, Jakob A, Mi GH, Zhang FS, Nordheim A, Hochholdinger F (2006) Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Proteomics 6:4300–4308CrossRefPubMedGoogle Scholar
  35. 35.
    Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158CrossRefPubMedGoogle Scholar
  36. 36.
    Mortenson E, Dreyfuss G (1989) Rnp in maize protein. Nature 337:312CrossRefPubMedGoogle Scholar
  37. 37.
    Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8(1):33–41CrossRefPubMedGoogle Scholar
  38. 38.
    Neumann P, Van Volkenburgh E, Cleland R (1988) Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility 1. Plant Physiol 88:233–237PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Ozturk Z, Talamé V, Deyholos M, Michalowski C, Galbraith D, Gozukirmizi N, Tuberosa R, Bohnert H (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48:551–573CrossRefGoogle Scholar
  40. 40.
    Pawlowski TA (2007) Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Proteomics 7:2246–2257CrossRefPubMedGoogle Scholar
  41. 41.
    Pawlowski TA (2009) Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol 9:48PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Pla M, Vilardell J, Guiltinan M, Marcotte W, Niogret M, Quatrano R, Pagès M (1993) The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol Biol 21:259–266CrossRefPubMedGoogle Scholar
  43. 43.
    Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination 1. Plant Physiol 134:1598–1613PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Sauer M, Jakob A, Nordheim A, Hochholdinger F (2006) Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Proteomics 6:2530–2541CrossRefPubMedGoogle Scholar
  46. 46.
    Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279CrossRefPubMedGoogle Scholar
  47. 47.
    Stacy R, Munthe E, Steinum T, Sharma B, Aalen R (1996) A peroxiredoxin antioxidant is encoded by a dormancy-related gene, Per1, expressed during late development in the aleurone and embryo of barley grains. Plant Mol Biol 31:1205–1216CrossRefPubMedGoogle Scholar
  48. 48.
    Stone S, Arnoldo M, Goring D (1999) A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science 286:1729CrossRefPubMedGoogle Scholar
  49. 49.
    Stone S, Anderson E, Mullen R, Goring D (2003) ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell 15:885PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Tan LY, Chen SX, Wang T, Dai SJ (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13:1850–1870CrossRefPubMedGoogle Scholar
  51. 51.
    Thiel T (1988) Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J Bacteriol 170:1143–1147PubMedCentralPubMedGoogle Scholar
  52. 52.
    Tomlinson D, Stevens E, Diemel L (1994) Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol Sci 15:293–297CrossRefPubMedGoogle Scholar
  53. 53.
    Wang B-C, Wang H-X, Feng J-X, Meng D-Z, Qu L-J, Zhu Y-X (2006) Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics 6:2555–2563CrossRefPubMedGoogle Scholar
  54. 54.
    Xu Y, Dixon S, Brereton R, Soini H, Novotny M, Trebesius K, Bergmaier I, Oberzaucher E, Grammer K, Penn D (2007) Comparison of human axillary odour profiles obtained by gas chromatography/mass spectrometry and skin microbial profiles obtained by denaturing gradient gel electrophoresis using multivariate pattern recognition. Metabolomics 3:427–437CrossRefGoogle Scholar
  55. 55.
    Yang PF, Li XJ, Wang XQ, Chen H, Chen F, Shen SH (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368CrossRefPubMedGoogle Scholar
  56. 56.
    Yang F, Svensson B, Finnie C (2011) Response of germinating barley seeds to Fusarium graminearum: the first molecular insight into Fusarium seedling blight. Plant Physiol Biochem 49:1362–1368CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang HX, Lian CL, Shen ZG (2009) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 103:923–930PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Zhang Heng, Han Bing, Wang Tai, Chen Sixue, Li Haiying, Zhang Yuhong, Dai Shaojun (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67CrossRefPubMedGoogle Scholar
  59. 59.
    Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71CrossRefPubMedGoogle Scholar
  60. 60.
    Zhu J, Chen S, Alvarez S, Asirvatham V, Schachtman D, Wu Y, Sharp R (2006) Cell wall proteome in the maize primary root elongation zone. I. extraction and identification of water-soluble and lightly ionically bound proteins 1. Plant Physiol 140:311–325PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Zimmermann G, Baumlein H, Mock H, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142:181PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ling-Bo Meng
    • 1
    • 2
  • Yi-Bo Chen
    • 3
  • Tian-Cong Lu
    • 4
  • Yue-Feng Wang
    • 3
  • Chun-Rong Qian
    • 5
  • Yang Yu
    • 5
  • Xuan-Liang Ge
    • 5
  • Xiao-Hui Li
    • 6
  • Bai-Chen Wang
    • 3
  1. 1.Department of Life ScienceHarbin UniversityHarbinPeople’s Republic of China
  2. 2.School of HorticultureNortheast Agricultural UniversityHarbinPeople’s Republic of China
  3. 3.Key Laboratory of Photobiology, Institute of BotanyChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.Institute of Crop Cultivation and FarmingHeilongjiang Academy of Agricultural SciencesHarbinPeople’s Republic of China
  6. 6.Center of Agri-BiotechnologyJilin Academy of Agricultural SciencesChangchunPeople’s Republic of China

Personalised recommendations