Molecular Biology Reports

, Volume 41, Issue 5, pp 3413–3423 | Cite as

Effects of Ca2+-activated potassium and inward rectifier potassium channel on the differentiation of endothelial progenitor cells from human peripheral blood

  • Gongjie Ye
  • Haiwang Guan
  • Justin Karush
  • Feng Wang
  • Xiaoyong Xu
  • Haiyan Mao
  • Xiaoyan Huang
  • Xi Yang
  • Ping Peng
  • Yanna Ba
  • Jianqing Zhou
  • Jiangfang Lian


Endothelial progenitor cells (EPCs) are bone marrow-derived cells that have the propensity to differentiate into mature endothelial cells (ECs). The transplantation of EPCs has been shown to enhance in vivo postnatal neo-vasculogenesis, as well as repair infarcted myocardium. Via the whole-cell patch clamp technique, numerous types of ion channels have been detected in EPCs, including the inward rectifier potassium channel (IKir), Ca2+-activated potassium channel (IKCa), and volume-sensitive chloride channel, but their influence on the differentiation of EPCs has yet to be characterized. The present study was designed to investigate: (1) which ion channels have the most significant impact on the differentiation of EPCs; (2) what role ion channels play in the functional development of EPCs; (3) the mRNA and protein expression levels of related ion channel subunits in EPCs. In our study, EPCs were obtained from the peripheral blood of healthy adults and cultured with endothelial growth factors. When EPCs differentiate into mature ECs, they lose expression of the stem cell/progenitor marker CD133, as analyzed by flow cytometry (0.44 ± 0.20 %). However, treatment with the potassium channel inhibitor, tetraethylammonium (TEA) results in an increase in CD133+ cells (25.50 ± 7.55 %). In a functional experiment, we observed a reduction in the capacity of TEA treated ECs (differentiated from EPCs) to form capillary tubes when seeded in Matrigel. At the mRNA and protein levels, we revealed several K+ subtypes, including KCNN4 for IKCa, KCNNMA1 for BKCa and Kir3.4 for IKir. These results demonstrate for the first time that potassium channels play a significant role in the differentiation of EPCs. Moreover, inhibition of potassium channels may depress the differentiation of EPCs and the significant potassium channel subunits in EPCs appear to be IKCa, BKCa and Kir3.4.


Endothelial progenitor cells (EPCs) Ca2+-activated potassium (KCa) Inward rectifier potassium channel (IKir) Differentiation 



This research was supported by the following Grants: Advanced Key Scientific and Technological Programs of NingBo (2011C5100), Fund of NingBo Science and Technology Innovation Team (2011B82015), National natural Science Foundation of NingBo (2010A610035), Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents, The Project of NingBo Medicine and Science (2009A01).


  1. 1.
    Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, Aikawa R et al (2003) Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108:3115–3121CrossRefPubMedGoogle Scholar
  2. 2.
    Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M et al (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24CrossRefPubMedGoogle Scholar
  3. 3.
    Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY et al (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627CrossRefPubMedGoogle Scholar
  4. 4.
    Kim SW, Yoon YS (2010) True autologous approach in cell therapy. Using your own serum for cell culture. Circ J 74:852–853CrossRefPubMedGoogle Scholar
  5. 5.
    Rafat N, Beck G, Pena-Tapia PG, Schmiedek P, Vajkoczy P (2009) Increased levels of circulating endothelial progenitor cells in patients with Moyamoya disease. Stroke 40:432–438CrossRefPubMedGoogle Scholar
  6. 6.
    Maeng YS, Choi HJ, Kwon JY, Park YW, Choi KS, Min JK et al (2009) Endothelial progenitor cell homing: prominent role of the IGF2-IGF2R-PLCbeta2 axis. Blood 113:233–243CrossRefPubMedGoogle Scholar
  7. 7.
    Murohara T (2001) Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med 11:303–307CrossRefPubMedGoogle Scholar
  8. 8.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958PubMedGoogle Scholar
  9. 9.
    Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353CrossRefPubMedGoogle Scholar
  10. 10.
    Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012PubMedGoogle Scholar
  11. 11.
    Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT et al (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021PubMedGoogle Scholar
  12. 12.
    Li GR, Deng XL (2011) Functional ion channels in stem cells. World J Stem Cells 3:19–24PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Chen LX, Zhu LY, Jacob TJ, Wang LW (2007) Roles of volume-activated Cl currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif 40:253–267CrossRefPubMedGoogle Scholar
  14. 14.
    Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G, Obermann E et al (2012) Role of KCNMA1 in breast cancer. PLoS One 7:e41664PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Jang SS, Park J, Hur SW, Hong YH, Hur J, Chae JH et al (2011) Endothelial progenitor cells functionally express inward rectifier potassium channels. Am J Physiol Cell Physiol 301:C150–C161CrossRefPubMedGoogle Scholar
  16. 16.
    Xu X, Xia J, Yang X, Huang X, Gao D, Zhou J et al (2012) Intermediate-conductance Ca(2+)-activated potassium and volume-sensitive chloride channels in endothelial progenitor cells from rat bone marrow mononuclear cells. Acta Physiol (Oxf) 205:302–313CrossRefGoogle Scholar
  17. 17.
    Nilius B (2001) Chloride channels go cell cycling. J Physiol 532:581PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Bernstein HS, Srivastava D (2012) Stem cell therapy for cardiac disease. Pediatr Res 71:491–499CrossRefPubMedGoogle Scholar
  19. 19.
    Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG et al (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93:1023–1025CrossRefPubMedGoogle Scholar
  20. 20.
    Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19:285–292CrossRefGoogle Scholar
  21. 21.
    Flores CA, Melvin JE, Figueroa CD, Sepulveda FV (2007) Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+-dependent K+ channel Kcnn4. J Physiol 583:705–717PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Jensen BS, Strobaek D, Olesen SP, Christophersen P (2001) The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2:401–422CrossRefPubMedGoogle Scholar
  23. 23.
    Cahalan MD, Wulff H, Chandy KG (2001) Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol 21:235–252CrossRefPubMedGoogle Scholar
  24. 24.
    Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J et al (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 25:704–709CrossRefPubMedGoogle Scholar
  25. 25.
    Kurian MM, Berwick ZC, Tune JD (2011) Contribution of IKCa channels to the control of coronary blood flow. Exp Biol Med (Maywood) 236:621–627CrossRefGoogle Scholar
  26. 26.
    Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–329CrossRefPubMedGoogle Scholar
  27. 27.
    Latorre R, Brauchi S (2006) Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biol Res 39:385–401CrossRefPubMedGoogle Scholar
  28. 28.
    Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7:921–931CrossRefPubMedGoogle Scholar
  29. 29.
    Won S, Kim HD, Kim JY, Lee BC, Chang S, Park CS (2010) Movements of individual BKCa channels in live cell membrane monitored by site-specific labeling using quantum dots. Biophys J 99:2853–2862PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ et al (2007) KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26:2525–2534CrossRefPubMedGoogle Scholar
  31. 31.
    Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191CrossRefPubMedGoogle Scholar
  32. 32.
    Herrler T, Leicht SF, Huber S, Hermann PC, Schwarz TM, Kopp R et al (2009) Prostaglandin E positively modulates endothelial progenitor cell homeostasis: an advanced treatment modality for autologous cell therapy. J Vasc Res 46:333–346CrossRefPubMedGoogle Scholar
  33. 33.
    Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104CrossRefPubMedGoogle Scholar
  34. 34.
    Marumo T, Uchimura H, Hayashi M, Hishikawa K, Fujita T (2006) Aldosterone impairs bone marrow-derived progenitor cell formation. Hypertension 48:490–496CrossRefPubMedGoogle Scholar
  35. 35.
    Nilius B, Schwarz G, Droogmans G (1993) Modulation by histamine of an inwardly rectifying potassium channel in human endothelial cells. J Physiol 472:359–371PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Stellos K, Langer H, Daub K, Schoenberger T, Gauss A, Geisler T et al (2008) Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 117:206–215CrossRefPubMedGoogle Scholar
  37. 37.
    Wang GL, Wang XR, Lin MJ, He H, Lan XJ, Guan YY (2002) Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res 91:E28–E32CrossRefPubMedGoogle Scholar
  38. 38.
    Yeh ET, Zhang S, Wu HD, Korbling M, Willerson JT, Estrov Z (2003) Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108:2070–2073CrossRefPubMedGoogle Scholar
  39. 39.
    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668CrossRefPubMedGoogle Scholar
  40. 40.
    Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gongjie Ye
    • 1
  • Haiwang Guan
    • 1
  • Justin Karush
    • 2
  • Feng Wang
    • 1
  • Xiaoyong Xu
    • 1
  • Haiyan Mao
    • 1
  • Xiaoyan Huang
    • 1
  • Xi Yang
    • 1
  • Ping Peng
    • 1
  • Yanna Ba
    • 1
  • Jianqing Zhou
    • 1
  • Jiangfang Lian
    • 1
  1. 1.LiHuiLi HospitalMedical School of NingBo UniversityNingboPeople’s Republic of China
  2. 2.Department of SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations