Advertisement

Molecular Biology Reports

, Volume 41, Issue 5, pp 3295–3302 | Cite as

Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli

  • Muddassar Zafar
  • Sibtain Ahmed
  • Muhammad Imran Mahmood Khan
  • Amer Jamil
Article

Abstract

The goal of this work was to produce high levels of endoglucanase in Escherichia coli for its potential usage in different industrial applications. Endoglucanase gene was amplified from genomic DNA of Bacillus subtilis JS2004 by PCR. The isolated putative endoglucanase gene consisted of an open reading frame of 1,701 nucleotides and encoded a protein of 567 amino acids with a molecular mass of 63-kDa. The gene was cloned into pET-28a(+) and expressed in E. coli BL21 (DE3). Optimum temperature and pH of the recombinant endoglucanase were 50 °C and 9, respectively which makes it very attractive for using in bio-bleaching and pulp industry. It had a K M of 1.76 μmol and V max 0.20 μmol/min with carboxymethylcellulose as substrate. The activity of recombinant endoglucanse was enhanced by Mg2+, Ca2+, isopropanol and Tween 20 and inhibited by Hg2+, Zn2+, Cu2+, Ni2+ and SDS. The activity of this recombinant endoglucanase was significantly higher than wild type. Therefore, this recombinant enzyme has potential for many industrial applications involving biomass conversions, due to characteristic of broad pH and higher temperature stability.

Keywords

Expression Purification Endoglucanase Bacillus subtlis Carboxymethylcellulase 

Notes

Acknowledgments

We acknowledge the financial support from Higher Education Commission (HEC), Pakistan for this research work.

References

  1. 1.
    Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84(1):19–35CrossRefPubMedGoogle Scholar
  2. 2.
    Ahmed S, Aslam N, Latif F, Rajoka MI, Jamil A (2005) Molecular cloning of cellulase genes from Trichoderma harzianum. Atta-ur-Rehman/Choudhary/Khan, Eds.), Frontiers in Natural Product Chemistry. Bentham Science Publishers, The Netherlands, 1: 73–75Google Scholar
  3. 3.
    Ahmed S, Qurrat-ul-Ain, Aslam N, Naeem S, Sajjad-ur-Rehman, Jamil A (2003) Induction of xylanase and cellulase genes from Trichoderma harzianum with different carbon sources. Pak J Biol Sci 6(22):1912–1916CrossRefGoogle Scholar
  4. 4.
    Ahmed S, Imdad SS, Jamil A (2012) Comparative study for the kinetics of extracellular xylanases from Trichoderma harzianum and Chaetomium thermophilum. Electron J Biotechnol. doi: 10.2225/vol15-issue3-fulltext-2 Google Scholar
  5. 5.
    Saadia M, Ahmed S, Jamil A (2008) Isolation and cloning of cre1 gene from a filamentous fungus Trichoderma harzianum. Pak J Bot 40(1):421–426Google Scholar
  6. 6.
    Ahmed S, Bashir A, Saleem H, Saadia M, Jamil A (2009) Production and purification of cellulose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak J Bot 41(3):1411–1419Google Scholar
  7. 7.
    Li W, Zhou Y, Ma QY, Chen YL (2009) Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from Golden Takin. Biochem Biophys Res Commun 383(4):397–400CrossRefPubMedGoogle Scholar
  8. 8.
    Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383CrossRefPubMedGoogle Scholar
  9. 9.
    de Castro AMde, de Carvalho MLDA, Leite SGf, Pereira N (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158CrossRefPubMedGoogle Scholar
  10. 10.
    Ahmed S, Jabeen A, Jamil A (2007) Xylanase from Trichoderma harzianum: enzyme characterization and gene isolation. J Chem Soc Pak 29(2):176–182Google Scholar
  11. 11.
    Saleem F, Ahmed S, Jamil A (2008) Isolation of a xylan degrading gene from genomic DNA library of a thermophilic fungus Chaetomium thermophile ATCC 28076. Pak J Bot 40(3):1225–1230Google Scholar
  12. 12.
    Yujuan W, Wang HYJ, Zengliang Y (2009) Truncation of the cellulose binding domain improved thermal stability of endo-β-1,4-glucanase from Bacillus subtilis JA18. Bioresour Technol 100(1):345–349CrossRefGoogle Scholar
  13. 13.
    Wen T, Chen J, Lee S, Yang N, Shyur L (2005) A truncated Fibrobacter succinogenes 1, 3–1, 4-β-glucanase with improved enzymatic activity and thermotolerance. Biochemistry 44(25):9197–9205CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang M, Shi ML, Zhou Z, Yang S, Yuan ZY (2006) Production of Alcaligenes faecalis penicillin G acylase in Bacillus subtilis WB600 (pMA5) fed with partially hydrolyzed starch. Enzyme Microb Technol 39(4):555–560CrossRefGoogle Scholar
  15. 15.
    Chaoning L, Fioronic M, Rodriguez-Roperoc F, Xuea Y, Schwanebergc U, Maa Y (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154(1):46–53CrossRefGoogle Scholar
  16. 16.
    Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–261PubMedGoogle Scholar
  17. 17.
    Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311CrossRefPubMedGoogle Scholar
  18. 18.
    Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M (2012) Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 11:41. doi: 10.1186/1475-2859-11-41 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562CrossRefPubMedGoogle Scholar
  20. 20.
    Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562CrossRefPubMedGoogle Scholar
  21. 21.
    Gupta S, Adlakha N, Yazdani SS (2013) Efficient extracellular secretion of an endoglucanase and a β-glucosidase in E. coli. Protein Expr Purif 88(1):20–25CrossRefPubMedGoogle Scholar
  22. 22.
    Lynd LR, van Zyl WH, McBride JE, Laser M (2006) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583CrossRefGoogle Scholar
  23. 23.
    Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  24. 24.
    Yamada YM, Koiche M, Hossan O, Kumito N, Yayoi Y, Masako O (2002) Comparison of two different methods for extraction of mitochondrial DNA from human pathogen yeast. Jpn J Infect Dis 55(4):122–125PubMedGoogle Scholar
  25. 25.
    Hingamp P, Broek AE, Stösser G, Baker W (1999) The EMBL nucleotide sequence database. Contributing and accessing data. Mol Biotechnol 12(3):255–267CrossRefPubMedGoogle Scholar
  26. 26.
    Yildirim N, Ciftci M, Kufreviog OI (2002) Kinetic analysis of multi enzyme systems: a case study of the closed system of creatine kinase, hexokinase and glucose 6-phosphate dehydrogenase. J Math Chem 31(1):121–130CrossRefGoogle Scholar
  27. 27.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRefPubMedGoogle Scholar
  28. 28.
    Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1(2):32–127Google Scholar
  29. 29.
    Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRefPubMedGoogle Scholar
  30. 30.
    Dienes D, Borjessonb J, Stalbrandb H, Reczey K (2006) Production of Trichoderma reesei Cel7B and its catalytic core on glucose medium and its application for the treatment of secondary fibers. Process Biochem 41(9):2092–2096CrossRefGoogle Scholar
  31. 31.
    Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34CrossRefPubMedGoogle Scholar
  32. 32.
    Li, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40(2):195–201CrossRefPubMedGoogle Scholar
  33. 33.
    Ng S, Li CW, Yeh YF, Chen PT, Chir JL, Ma CH, Yu SM, Ho TH, Tong CG (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13(3):425–435CrossRefPubMedGoogle Scholar
  34. 34.
    Ghori MI, Ahmed S, Malana MA, Jamil A (2012) Kinetics of exoglucanase and endoglucanase produced by Aspergillus niger NRRL 567. Afr J Biotechnol 11(28):7227–7231Google Scholar
  35. 35.
    Ghori MI, Ahmed S, Malana MA, Jamil A (2011) Corn stover-enhanced cellulase production by Aspergillus niger NRRL 567. Afr J Biotechnol 10(31):5878–5886Google Scholar
  36. 36.
    Jamil A, Naim S, Ahmed S, Ashraf M (2005) Production of industrially important enzymes using molecular approaches: cellulases and xylanases. In: Thangadurai D, Pullaiah T, Pedro A (eds) Balatti genetic resources and biotechnology II, vol 2. Regency publications, New Delhi, pp 143–183Google Scholar
  37. 37.
    Ogura J, Toyoda A, Kurosawa T, Chong AL, Chohnan S, Masaki T (2006) Purification, characterization, and gene analysis of cellulase (Cel8A) from Lysobacter sp. IB-9374. Biosci Biotechnol Biochem 70(10):2420–2428CrossRefPubMedGoogle Scholar
  38. 38.
    You JL, Kima BK, Lee BH, Joa KI, Leea NK (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99(2):378–386CrossRefGoogle Scholar
  39. 39.
    Bo KK, Lee BH, Leeb YJ, Jina H, Chunga CH, Lee JW (2009) Purification and characterization of carboxymethylcellulase isolated from a marine bacterium Bacullus subtilis subsp. A-53. Enzyme Microb Technol 44(6–7):411–416Google Scholar
  40. 40.
    Odeniyi OA, Onilude AA, Ayodele MA (2009) Production characteristics and properties of cellulose polygalacturonase by a Bacillus coagulans strain from a fermenting palm-fruit industrial residue. Afr J Microbiol Res 3(8):407–417Google Scholar
  41. 41.
    Gurdeep R, Bhallaa A, Adhikaria A, Bischoff KM, Hughesb SR, Christopherc LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geo bacillus strains. Bioresour Technol 101(22):8798–8806CrossRefGoogle Scholar
  42. 42.
    Thirumalai P, Piriyaa PS, Prabhua DIG, Vennison SJ (2011) Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour Technol 102(3):2585–2589CrossRefGoogle Scholar
  43. 43.
    Zhuo Y, Peia X, Wu Z (2011) Introduction of glycine and proline residues onto protein surface increases the thermostability of endoglucanase CelA from Clostridium thermocellum. Bioresour Technol 102(3):3636–3638CrossRefGoogle Scholar
  44. 44.
    Maria JM, Rosana VM, Adrian AL, Maximiliano JA, Sergio EA, Gladys MC (2006) Production of recombinant enzymes of wide use for research. Elect J Biotech. doi: 10.2225/vol9-issue3-fulltext-16 Google Scholar
  45. 45.
    Xu Z, Shih MC, Poulton JE (2006) An extracellular exo-beta-(1,3)-glucanase from Pichia pastoris: purification, characterization, molecular cloning, and functional expression. Protein Expr Purif 47(1):118–127CrossRefPubMedGoogle Scholar
  46. 46.
    Peng Y, Chi ZM, Wang XH, Li J (2009) Purification and molecular characterization of exo-beta-1,3-glucanases from the marine yeast Williopsis saturnus WC91-2. Appl Microbiol Biotechnol 85(1):85–94CrossRefPubMedGoogle Scholar
  47. 47.
    Anne BB, Anne BO, Tomas F, Annette P, Anette SS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting inconvertible cellulose and hemicellulose. Biotechnol Bioeng 49(5):568–577CrossRefGoogle Scholar
  48. 48.
    Zhang F, Chen J-J, Ren W-Z, Nie G-X, Ming H, Tang S-K, Li W-J (2011) Cloning, expression and characterization of an alkaline thermostable GH9 endoglucanase from Thermobifida halotolerans YIM 90462T. Bioresour Technol 102(21):10143–10146CrossRefPubMedGoogle Scholar
  49. 49.
    Endo K, Hakamada Y, Takizawa S, Kubota H, Sumitomo N, Kobayashi T, Ito S (2001) A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic properties, and nucleotide and deduced amino acid sequences. Appl Microbiol Biotechnol 57(1–2):109–116PubMedGoogle Scholar
  50. 50.
    Sharma P, Gupta JK, Vadehra DV, Dube DK (1990) Purification and properties of an endoglucanase from a Bacillus isolate. Enzyme Microb Technol 12(2):132–137CrossRefGoogle Scholar
  51. 51.
    Jo KI, Lee YJ, Kim BK, Lee BH, Jung CH, Nam SW (2008) Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol Bioprocess Eng 13(2):182–188CrossRefGoogle Scholar
  52. 52.
    Lamed R, Tormo, Chirino AJ, Morag E, Bayer EA (1994) Crystallization and preliminary X-ray analysis of the major cellulose-binding domain of the cellulase from Clostridium thermocellum. J Mol Biol 244(2):236–237CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of BiochemistryPir Mehr Ali Shah Arid Agriculture UniversityRawalpindiPakistan
  2. 2.Department of Chemistry and BiochemistryUniversity of AgricultureFaisalabadPakistan
  3. 3.University of California, San DiegoLa JollaUSA
  4. 4.School of Biological SciencesUniversity of the PunjabLahorePakistan

Personalised recommendations