Molecular Biology Reports

, Volume 41, Issue 5, pp 2799–2808 | Cite as

Inhibition of microRNA miR-92a induces apoptosis and inhibits cell proliferation in human acute promyelocytic leukemia through modulation of p63 expression

  • Mohammadreza Sharifi
  • Rasoul Salehi
  • Yousof Gheisari
  • Mohammad Kazemi


MicroRNAs (miRNAs) are endogenous non-coding RNAs, 19–25 nucleotides in length involved in post-transcriptional regulation of gene expression of great majority of the human protein coding genes. Different aspects of cellular activities like cell growth, proliferation, and differentiation are regulated by miRNAs through their interaction with particular RNA species. In many tumors up or down-regulation of different miRNAs has been reported. Human miR-17-92 gene cluster is located on 13q31.3, rooming several miRNAs including miR-17-5p, miR-17-3p, miR-18, miR-19a, miR-20a and miR-92a. Amplification or overexpression of this cluster has been reported in acute myeloid leukemia, acute lymphoblastic leukemia and several other cancer types. Here, we performed inhibition of miR-92a in an acute promyelocytic leukemia (APL) cell line (HL-60) using locked nucleic acid (LNA) antagomir. In different time points after LNA-anti-miR92a transfection, MTT assay and annexin/propidium iodide staining were performed. These assessments indicate that miR-92a inhibition can extensively decrease the viability of these cells which is mainly due to induction of apoptosis. Western blot analysis of p63 protein also revealed that miR-92a inhibition resulted in p63 expression, hence activation of cellular pathways which are normally controlled by p63 protein are retrieved. These findings could open up a path to the miRNAs based therapeutic approach for treatment of APL.


MicroRNA miR-92a p63 Acute promyelocytic leukemia Locked nucleic acid 



This study was conducted with financial support of Isfahan University of Medical Sciences (IRAN) with grant number 390255.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ruan K, Fang X, Ouyang G (2009) MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 285(2):116–126CrossRefPubMedGoogle Scholar
  2. 2.
    Faller M, Guo F (2008) MicroRNA biogenesis: there’s more than one way to skin a cat. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1779(11):663–667CrossRefGoogle Scholar
  3. 3.
    Reddy SDN, Gajula RP, Pakala SB, Kumar R (2010) MicroRNAs and cancer therapy. Cancer Biol Ther 9(7):479–482PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  5. 5.
    Fabbri M, Garzon R, Andreeff M, Kantarjian H, Garcia-Manero G, Calin G (2008) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22(6):1095–1105CrossRefPubMedGoogle Scholar
  6. 6.
    Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43(10):595–603PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Hu G, Drescher KM, Chen XM (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56PubMedCentralPubMedGoogle Scholar
  9. 9.
    Barh D, Malhotra R, Ravi B, Sindhurani P (2010) Microrna let-7: an emerging next-generation cancer therapeutic. Current Oncology 17(1):70PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Drakaki A, Iliopoulos D (2009) MicroRNA gene networks in oncogenesis. Curr Genomics 10(1):35PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    George G, Mittal RD (2010) MicroRNAs: potential biomarkers in cancer. Indian J Clin Biochem 25(1):4–14PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Seto AG (2010) The road toward microRNA therapeutics. Int J Biochem Cell Biol 42(8):1298–1305CrossRefPubMedGoogle Scholar
  13. 13.
    Gu J, Zhu X, Li Y, Dong D, Yao J, Lin C, Huang K, Hu H, Fei J (2011) miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med Oncol 28(1):211–218CrossRefPubMedGoogle Scholar
  14. 14.
    Chan E, Prado DE, Weidhaas JB (2011) Cancer microRNAs: from subtype profiling to predictors of response to therapy. Trends Mol Med. doi: 10.1016/j.molmed.2011.01.008 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Zhang P, Ma Y, Wang F, Yang J, Liu Z, Peng J, Qin H (2012) Comprehensive gene and microRNA expression profiling reveals the crucial role of hsa-let-7i and its target genes in colorectal cancer metastasis. Mol Biol Rep 39(2):1471–1478CrossRefPubMedGoogle Scholar
  16. 16.
    Spizzo R, Rushworth D, Guerrero M, Calin GA (2009) RNA inhibition, microRNAs, and new therapeutic agents for cancer treatment. Clin Lymphoma Myeloma Leuk 9:313–318CrossRefGoogle Scholar
  17. 17.
    Trang P, Weidhaas J, Slack F (2008) MicroRNAs as potential cancer therapeutics. Oncogene 27:S52–S57CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H, Lu H, Yang W, Luo C, Lu S, Zhou Y, Lin Y (2012) The influence of statin therapy on circulating microRNA-92a expression in patients with coronary heart disease. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 24(4):215 Chinese critical care medicine = Zhongguo weizhongbing jijiuyixuePubMedGoogle Scholar
  19. 19.
    Baltimore DB (2012) MicroRNAs in Inflammation and their Disregulation in Cancer and Autoimmune Disease. Annual Review of Immunology 30 (1)Google Scholar
  20. 20.
    Estey EH (2012) Acute myeloid leukemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 87(1):89–99CrossRefPubMedGoogle Scholar
  21. 21.
    Tallman MS (2008) Altman JK (2008) Curative strategies in acute promyelocytic leukemia. ASH Education Program Book 1:391–399Google Scholar
  22. 22.
    Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111(5):2505–2515CrossRefPubMedGoogle Scholar
  23. 23.
    Breccia M, Latagliata R, Carmosino I, Cannella L, Diverio D, Guarini A, De Propris MS, Petti MC, Avvisati G, Cimino G (2008) Clinical and biological features of acute promyelocytic leukemia patients developing retinoic acid syndrome during induction treatment with all-trans retinoic acid and idarubicin. Haematologica 93(12):1918–1920CrossRefPubMedGoogle Scholar
  24. 24.
    Yang JJ, Park TS, Kim MJ, Cho EH, Oh SH, Jeon BR, Oh D, Huh JY, Marschalek R, Meyer C (2012) Acute promyelocytic leukemia with trisomy 8 showing normal PML-RARA FISH signal patterns: diagnostic application of long-distance polymerase chain reaction in molecularly discrepant leukemia cases. Annals of Hematology 91(10):1645–1648 Google Scholar
  25. 25.
    Melnick A, Licht JD (1999) Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93(10):3167–3215PubMedGoogle Scholar
  26. 26.
    Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results [see comments]. Blood 76(9):1704–1709PubMedGoogle Scholar
  27. 27.
    Mann G, Reinhardt D, Ritter J, Hermann J, Schmitt K, Gadner H, Creutzig U (2001) Treatment with all-trans retinoic acid in acute promyelocytic leukemia reduces early deaths in children. Ann Hematol 80(7):417–422CrossRefPubMedGoogle Scholar
  28. 28.
    Tanaka M, Oikawa K, Takanashi M, Kudo M, Ohyashiki J, Ohyashiki K, Kuroda M (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 4(5):e5532PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Ohyashiki JH, Umezu T, Kobayashi C, Hamamura RS, Tanaka M, Kuroda M, Ohyashiki K (2010) Impact on cell to plasma ratio of miR-92a in patients with acute leukemia: in vivo assessment of cell to plasma ratio of miR-92a. BMC research notes 3(1):347PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Manni I, Artuso S, Careccia S, Rizzo MG, Baserga R, Piaggio G, Sacchi A (2009) The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J 23(11):3957–3966CrossRefPubMedGoogle Scholar
  31. 31.
    Van Haaften G, Agami R (2010) Tumorigenicity of the miR-17-92 cluster distilled. Genes Dev 24(1):1–4PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327–335CrossRefPubMedGoogle Scholar
  33. 33.
    Alemdehy MF, Erkeland SJ (2012) MicroRNAs: key players of normal and malignant myelopoiesis. Curr Opin Hematol 19(4):261–267CrossRefPubMedGoogle Scholar
  34. 34.
    Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Scherr M (2007) Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109(10):4399–4405CrossRefPubMedGoogle Scholar
  35. 35.
    Hussein K, Büsche G, Muth M, Göhring G, Kreipe H, Bock O (2011) Expression of myelopoiesis-associated microRNA in bone marrow cells of atypical chronic myeloid leukaemia and chronic myelomonocytic leukaemia. Ann Hematol 90(3):307–313CrossRefPubMedGoogle Scholar
  36. 36.
    Yoshizawa S, Ohyashiki J, Ohyashiki M, Umezu T, Suzuki K, Inagaki A, Iida S, Ohyashiki K (2012) Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J 2(1):e53PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Ji M, Rao E, Ramachandrareddy H, Shen Y, Jiang C, Chen J, Hu Y, Rizzino A, Chan WC, Fu K (2011) The miR-17-92 microRNA cluster is regulated by multiple mechanisms in B-cell malignancies. Am J Pathol 179(4):1645–1656PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G (2009) The miR-17-92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci 106(8):2812PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Zhou T, Zhang G, Liu Z, Xia S, Tian H (2012) Overexpression of miR-92a correlates with tumor metastasis and poor prognosis in patients with colorectal cancer. Int J Color Dis 28(1):19–24Google Scholar
  40. 40.
    Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng S, Ge W (2012) MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol 29(2):1037–1043CrossRefPubMedGoogle Scholar
  41. 41.
    Saunders MA, Lim LP (2009) micro) Genomic medicine: microRNAs as therapeutics and biomarkers. RNA Biol 6(3):324CrossRefPubMedGoogle Scholar
  42. 42.
    Dong C, Ji M, Ji C (2009) microRNAs and their potential target genes in leukemia pathogenesis. Cancer Biol Ther 8(3):200–205CrossRefPubMedGoogle Scholar
  43. 43.
    Ørom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141CrossRefPubMedGoogle Scholar
  44. 44.
    Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452(7189):896–899CrossRefPubMedGoogle Scholar
  45. 45.
    Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochemical and biophysical research communications 379(3):726–731CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang H, Chen YQ (2009) New insight into the role of miRNAs in leukemia. Sci China, Ser C Life Sci 52(3):224–231CrossRefGoogle Scholar
  47. 47.
    Veedu RN, Wengel J (2009) Locked nucleic acid as a novel class of therapeutic agents. RNA Biol 6(3):321–323CrossRefPubMedGoogle Scholar
  48. 48.
    Sun S, Rockova V, Bullinger L, Dijkstra M, Döhner H, Löwenberg B, Jongen-Lavrencic M (2012) The prognostic relevance of miR-212 expression with survival in cytogenetically and molecularly heterogeneous AML. Leukemia. doi: 10.1038/leu.2012.158 Google Scholar
  49. 49.
    Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci 105(40):15535–15540PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632CrossRefPubMedGoogle Scholar
  52. 52.
    Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch TI, Nakazawa Y, Hayashi T, Ohtsuru A, Yamashita S (2008) Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci 99(6):1147–1154CrossRefPubMedGoogle Scholar
  53. 53.
    Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB, Michael MZ (2012) Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR‐17‐92 cluster. Mol Carcinog 52(6):459–474 Google Scholar
  54. 54.
    Haug BH, Henriksen JR, Buechner J, Geerts D, Tømte E, Kogner P, Martinsson T, Flægstad T, Sveinbjørnsson B, Einvik C (2011) MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma. Carcinogenesis 32(7):1005–1012CrossRefPubMedGoogle Scholar
  55. 55.
    Romilda C, Marika P, Alessandro S, Enrico L, Marina B, Andromachi K, Umberto C, Giacomo Z, Claudia M, Massimo R (2012) Oxidative DNA damage correlates with cell immortalization and mir-92 expression in hepatocellular carcinoma. BMC Cancer 12(1):177PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A, Lu J, Pelloso LA, Wunderlich M, Huang H (2010) Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci 107(8):3710–3715PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Wong P, Iwasaki M, Somervaille TCP, Ficara F, Carico C, Arnold C, Chen CZ, Cleary ML (2010) The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 70(9):3833–3842PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Babashah S, Sadeghizadeh M, Tavirani MR, Farivar S, Soleimani M (2012) Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cellular Oncology 35(5):317–334Google Scholar
  59. 59.
    Yuan Y, Zeng ZY, Liu XH, Gong DJ, Tao J, Cheng HZ, Huang SD (2011) MicroRNA-203 inhibits cell proliferation by repressing ΔNp63 expression in human esophageal squamous cell carcinoma. BMC Cancer 11(1):57PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Namløs HM, Meza-Zepeda LA, Barøy T, Østensen IHG, Kresse SH, Kuijjer ML, Serra M, Bürger H, Cleton-Jansen AM, Myklebost O (2012) Modulation of the osteosarcoma expression phenotype by MicroRNAs. PLoS One 7(10):e48086PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Schee K, Boye K, Abrahamsen TW, Fodstad Ø, Flatmark K (2012) Clinical relevance of microRNA mir-21, mir-31, mir-92a, mir-101, mir-106a and mir-145 in colorectal cancer. BMC Cancer 12(1):505PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T, Ueda S, Takanashi M, Kuroda M (2011) miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 102(12):2264–2271CrossRefPubMedGoogle Scholar
  63. 63.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science Signalling 324(5935):1710Google Scholar
  64. 64.
    Nasr R, Lallemand-Breitenbach V, Zhu J, Guillemin MC (2009) Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin Cancer Res 15(20):6321–6326CrossRefPubMedGoogle Scholar
  65. 65.
    Li Y, Zhu X, Gu J, Dong D, Yao J, Lin C, Huang K, Fei J (2010) Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci 101(4):948–954CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mohammadreza Sharifi
    • 1
  • Rasoul Salehi
    • 1
  • Yousof Gheisari
    • 1
  • Mohammad Kazemi
    • 1
  1. 1.Department of Genetics and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations