Molecular Biology Reports

, Volume 41, Issue 4, pp 2687–2695 | Cite as

Selective interactions of hnRNP M isoforms with the TET proteins TAF15 and TLS/FUS

  • Marija Marko
  • Michael Leichter
  • Meropi Patrinou-Georgoula
  • Apostolia Guialis


The molecular composition of macromolecular assemblies engaged in transcription and splicing influences biogenesis of mRNA transcripts. Preference for one over the other interactive protein partner within those complexes is expected to change the gene expression pattern and to affect subsequent cellular events. We report here the novel and selective associations between RNA-binding proteins, namely the hnRNP M1-4 isoforms—involved in early spliceosome assembly and alternative splicing—and the transcription factors TAF15 and TLS/FUS. In immunoprecipitation studies on HeLa nuclear extracts, TAF15 co-immunoprecipitates preferably with the higher molecular weight hnRNP M3/4 isoforms, opposite to TLS/FUS that associates with the lower molecular weight hnRNP M1/2 species. We demonstrate that these associations can be mediated through direct protein–protein interactions via the amino-termini of the TET proteins, independently of RNA. Finally, we show partial co-localization of TAF15 and TLS/FUS with hnRNP M proteins in HeLa nuclei, supporting the biochemically obtained data. The participation of hnRNP M in an expanding network of protein–protein interactions suggests its important functioning in the coordination of transcriptional and post-transcriptional events.


TET proteins RNA-binding proteins hnRNP M mRNA processing 



We thank Drs. L. Tora for the generous gift of the anti-TAF15, -TLS/FUS antibodies and W. van Venrooij of the anti-U2B” antibody. M.M. and M.L. were Marie Curie post-doctoral fellows working in the framework of the FP6 EU grant MTKD-CT-2004-509836 that also provided financial support for this work. The experimental work presented in the present report was performed in the auspices of the Institute of Biological Research and Biotechnology, currently a Division of the Institute of Biology, Medicinal Chemistry and Biotechnology.


  1. 1.
    Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205. doi: 10.1038/nrm760 PubMedCrossRefGoogle Scholar
  2. 2.
    Datar KV, Dreyfuss G, Swanson MS (1993) The human hnRNP M proteins: identification of a methionine/arginine-rich repeat motif in ribonucleoproteins. Nucleic Acids Res 21:439–446PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kafasla P, Patrinou-Georgoula M, Lewis JD, Guialis A (2002) Association of the 72/74-kDa proteins, members of the heterogeneous nuclear ribonucleoprotein M group, with the pre-mRNA at early stages of spliceosome assembly. Biochem J 363:793PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Aidinis V, Sekeris CE, Guialis A (1995) Two immunologically related polypeptides of 72/74 kDa specify a novel 70–100S heterogeneous nuclear RNP. Nucleic Acids Res 23:2742–2753PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hovhannisyan RH, Carstens RP (2007) Heterogeneous ribonucleoprotein M Is a splicing regulatory protein that can enhance or silence splicing of alternatively spliced exons. J Biol Chem 282:36265–36274. doi: 10.1074/jbc.M704188200 PubMedCrossRefGoogle Scholar
  6. 6.
    Park E, Iaccarino C, Lee J, Kwon I, Baik SM, Kim M, Seong JY, Son GH, Borrelli E, Kim K (2011) Regulatory roles of heterogeneous nuclear ribonucleoprotein M and nova-1 protein in alternative splicing of dopamine D2 receptor pre-mRNA. J Biol Chem 286:25301–25308. doi: 10.1074/jbc.M110.206540 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Marko M, Leichter M, Patrinou-Georgoula M, Guialis A (2010) hnRNP M interacts with PSF and p54nrb and co-localizes within defined nuclear structures. Exp Cell Res 316:390–400. doi: 10.1016/j.yexcr.2009.10.021 PubMedCrossRefGoogle Scholar
  8. 8.
    Llères D, Denegri M, Biggiogera M, Ajuh P, Lamond AI (2010) Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Rep 11:445–451. doi: 10.1038/embor.2010.64 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Pahlich S, Quero L, Roschitzki B, Leemann-Zakaryan RP, Gehring H (2009) Analysis of Ewing sarcoma (EWS)-binding proteins: interaction with hnRNP M, U, and RNA-helicases p68/72 within protein–RNA Complexes. J Proteome Res 8:4455–4465. doi: 10.1021/pr900235t PubMedCrossRefGoogle Scholar
  10. 10.
    Morohoshi F, Arai K, Takahashi EI, Tanigami A, Ohki M (1996) Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 38:51–57. doi: 10.1006/geno.1996.0591 PubMedCrossRefGoogle Scholar
  11. 11.
    Tan AY, Manley JL (2009) The TET family of proteins: functions and roles in disease. J Mol Cell Biol 1:82–92. doi: 10.1093/jmcb/mjp025 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Riggi N, Cironi L, Suvà M-L, Stamenkovic I (2007) Sarcomas: genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 213:4–20. doi: 10.1002/path.2209 PubMedCrossRefGoogle Scholar
  13. 13.
    Sankar S, Lessnick SL (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet 204:351–365. doi: 10.1016/j.cancergen.2011.07.008 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bertolotti A, Lutz Y, Heard DJ, Chambon P, Tora L (1996) hTAF (II) 68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J 15:5022PubMedCentralPubMedGoogle Scholar
  15. 15.
    Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O, Tora L (1998) EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol Cell Biol 18:1489PubMedCentralPubMedGoogle Scholar
  16. 16.
    Knoop LL (2000) The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem 275:24865–24871. doi: 10.1074/jbc.M001661200 PubMedCrossRefGoogle Scholar
  17. 17.
    Jobert L, Pinzón N, Van Herreweghe E, Jády BE, Guialis A, Kiss T, Tora L (2009) Human U1 snRNA forms a new chromatin-associated snRNP with TAF15. EMBO Rep 10:494–500. doi: 10.1038/embor.2009.24 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Leichter M, Marko M, Ganou V, Patrinou-Georgoula M, Tora L, Guialis A (2011) A fraction of the transcription factor TAF15 participates in interactions with a subset of the spliceosomal U1 snRNP complex. Biochimica et Biophysica Acta (BBA) 1814:1812–1824 doi:  10.1016/j.bbapap.2011.09.008
  19. 19.
    Yamazaki T, Chen S, Yu Y et al (2012) FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep 2:799–806. doi: 10.1016/j.celrep.2012.08.025 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Neumann M, Bentmann E, Dormann D et al (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134:2595–2609PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kafasla P, Patrinou-Georgoula M, Guialis A (2000) The 72/74-kDa polypeptides of the 70-110 S large heterogeneous nuclear ribonucleoprotein complex (LH-nRNP) represent a discrete subset of the hnRNP M protein family. Biochem J 350:495PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Marko M, Vlassis A, Guialis A, Leichter M (2012) Domains involved in TAF15 subcellular localisation: dependence on cell type and ongoing transcription. Gene 506:331–338. doi: 10.1016/j.gene.2012.06.088 PubMedCrossRefGoogle Scholar
  23. 23.
    Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Bertolotti A, Bell B, Tora L (1999) The N-terminal domain of human TAFII68 displays transactivation and oncogenic properties. Oncogene 18:8000–8010. doi: 10.1038/sj.onc.1203207 PubMedCrossRefGoogle Scholar
  25. 25.
    Pettersson I, Hinterberger M, Mimori T, Gottlieb E, Steitz JA (1984) The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies. J Biol Chem 259:5907–5914PubMedGoogle Scholar
  26. 26.
    Wada K, Inoue K, Hagiwara M (2002) Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1591:1–10Google Scholar
  27. 27.
    Jobert L, Argentini M, Tora L (2009) PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp Cell Res 315:1273–1286. doi: 10.1016/j.yexcr.2008.12.008 PubMedCrossRefGoogle Scholar
  28. 28.
    Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S, Farazi TA, Hafner M, Borkhardt A, Sander C, Tuschl T (2011) RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol Biol 18:1428–1431. doi: 10.1038/nsmb.2163 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Russo A, Cirulli C, Amoresano A, Pucci P, Pietropaolo C, Russo G (2008) cis-Acting sequences and trans-acting factors in the localization of mRNA for mitochondrial ribosomal proteins. Biochim Biophys Acta 1779:820–829. doi: 10.1016/j.bbagrm.2008.08.006 PubMedCrossRefGoogle Scholar
  30. 30.
    Hessle V, Björk P, Sokolowski M et al (2009) The exosome associates cotranscriptionally with the nascent pre-mRNP through Interactions with heterogeneous nuclear ribonucleoproteins. Mol Biol Cell 20:3459–3470. doi: 10.1091/mbc.E09-01-0079 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Han SP, Kassahn KS, Skarshewski A, Ragan MA, Rothnagel JA, Smith R (2010) Functional implications of the emergence of alternative splicing in hnRNP A/B transcripts. RNA 16:1760–1768. doi: 10.1261/rna.2142810 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Medical Faculty, Institute for Biochemistry IUniversity of CologneCologneGermany
  2. 2.Rheinische Akademie Köln gGmbHCologneGermany
  3. 3.Division of Biological Research and Biotechnology, Institute of Biology, Medicinal Chemistry and BiotechnologyNational Hellenic Research FoundationAthensGreece

Personalised recommendations