Molecular Biology Reports

, Volume 41, Issue 4, pp 2501–2508 | Cite as

Association of genetic and non-genetic risk factors with the development of prostate cancer in Malaysian men

  • Khamsigan Munretnam
  • Livy Alex
  • Nurul Hanis Ramzi
  • Jagdish Kaur Chahil
  • I. S. Kavitha
  • Nikman Adli Nor Hashim
  • Say Hean Lye
  • Sharmila Velapasamy
  • Lian Wee Ler


There is growing global interest to stratify men into different levels of risk to developing prostate cancer, thus it is important to identify common genetic variants that confer the risk. Although many studies have identified more than a dozen common genetic variants which are highly associated with prostate cancer, none have been done in Malaysian population. To determine the association of such variants in Malaysian men with prostate cancer, we evaluated a panel of 768 SNPs found previously associated with various cancers which also included the prostate specific SNPs in a population based case control study (51 case subjects with prostate cancer and 51 control subjects) in Malaysian men of Malay, Chinese and Indian ethnicity. We identified 21 SNPs significantly associated with prostate cancer. Among these, 12 SNPs were strongly associated with increased risk of prostate cancer while remaining nine SNPs were associated with reduced risk. However, data analysis based on ethnic stratification led to only five SNPs in Malays and 3 SNPs in Chinese which remained significant. This could be due to small sample size in each ethnic group. Significant non-genetic risk factors were also identified for their association with prostate cancer. Our study is the first to investigate the involvement of multiple variants towards susceptibility for PC in Malaysian men using genotyping approach. Identified SNPs and non-genetic risk factors have a significant association with prostate cancer.


Prostate cancer SNP Association Malaysia Predisposition 



The authors gratefully thank and acknowledge all the study subjects for participating in this project. Our special thanks go to all participating hospitals and doctors and staff, for making this study feasible. This work was funded by INFOVALLEY® Life Sciences Sdn. Bhd.

Supplementary material

11033_2014_3107_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedCrossRefGoogle Scholar
  2. 2.
    National Cancer Registry MoHM (2006) Malaysia Cancer Statistic Data and Figure Peninsular MalaysiaGoogle Scholar
  3. 3.
    Haas GP, Sakr WA (1997) Epidemiology of prostate cancer. CA Cancer J Clin 47:273–287PubMedCrossRefGoogle Scholar
  4. 4.
    Quinn M, Babb P (2002) Patterns and trends in prostate cancer incidence, survival, prevalence and mortality. Part II: individual countries. BJU Int 90:174–184PubMedCrossRefGoogle Scholar
  5. 5.
    Takata R, Akamatsu S, Kubo M, Takahashi A, Hosono N, Kawaguchi T et al (2010) Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 42:751–754PubMedCrossRefGoogle Scholar
  6. 6.
    Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39:645–649PubMedCrossRefGoogle Scholar
  7. 7.
    Zheng SL, Sun J, Cheng Y, Li G, Hsu FC, Zhu Y et al (2007) Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst 99:1525–1533PubMedCrossRefGoogle Scholar
  8. 8.
    Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C et al (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81:1879–1886PubMedCrossRefGoogle Scholar
  9. 9.
    Cassidy A, Myles JP, van Tongeren M, Page RD, Liloglou T, Duffy SW et al (2008) The LLP risk model: an individual risk prediction model for lung cancer. Br J Cancer 98:270–276PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Freedman AN, Slattery ML, Ballard-Barbash R, Willis G, Cann BJ, Pee D et al (2009) Colorectal cancer risk prediction tool for white men and women without known susceptibility. J Clin Oncol 27:686–693PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Nam RK, Toi A, Klotz LH, Trachtenberg J, Jewett MA, Appu S et al (2007) Assessing individual risk for prostate cancer. J Clin Oncol 25:3582–3588PubMedCrossRefGoogle Scholar
  12. 12.
    Subahir MN, Shah SA, Zainuddin ZM (2009) Risk factors for prostate cancer in Universiti Kebangsaan Malaysia Medical Centre: a case-control study. Asian Pac J Cancer Prev 10:1015–1020PubMedGoogle Scholar
  13. 13.
    Nargesi MM, Ismail P, Razack AH, Pasalar P, Nazemi A, Oshkoor SA et al (2011) Linkage between prostate cancer occurrence and Y-chromosomal DYS loci in Malaysian subjects. Asian Pac J Cancer Prev 12:1265–1268PubMedGoogle Scholar
  14. 14.
    Smith DS, Humphrey PA, Catalona WJ (1997) The early detection of prostate carcinoma with prostate specific antigen: the Washington University experience. Cancer 80:1852–1856PubMedCrossRefGoogle Scholar
  15. 15.
    Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS et al (2006) Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst 98:529–534PubMedCrossRefGoogle Scholar
  16. 16.
    Kaplan DJ, Boorjian SA, Ruth K, Egleston BL, Chen DY, Viterbo R et al (2010) Evaluation of the Prostate Cancer Prevention Trial Risk calculator in a high-risk screening population. BJU Int 105:334–337PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lowrance WT, Scardino PT (2009) Predictive models for newly diagnosed prostate cancer patients. Rev Urol 11:117–126PubMedCentralPubMedGoogle Scholar
  18. 18.
    Tindall DJ, Rittmaster RS (2008) The rationale for inhibiting 5alpha-reductase isoenzymes in the prevention and treatment of prostate cancer. J Urol 179:1235–1242PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ritchey JD, Huang WY, Chokkalingam AP, Gao YT, Deng J, Levine P et al (2005) Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 14:1703–1709PubMedCrossRefGoogle Scholar
  20. 20.
    Angele S, Falconer A, Edwards SM, Dork T, Bremer M, Moullan N et al (2004) ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer 91:783–787PubMedCentralPubMedGoogle Scholar
  21. 21.
    Sobti RC, Onsory K, Al-Badran AI, Kaur P, Watanabe M, Krishan A et al (2006) CYP17, SRD5A2, CYP1B1, and CYP2D6 gene polymorphisms with prostate cancer risk in North Indian population. DNA Cell Biol 25:287–294PubMedCrossRefGoogle Scholar
  22. 22.
    Casey G, Neville PJ, Plummer SJ, Xiang Y, Krumroy LM, Klein EA et al (2002) RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 32:581–583PubMedCrossRefGoogle Scholar
  23. 23.
    Lim GCC (2002) H.Y.a.T.O.L. The first report of the national cancer registry cancer incidence in MalaysiaGoogle Scholar
  24. 24.
    Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G et al (2008) Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358:910–919PubMedCrossRefGoogle Scholar
  25. 25.
    Lin HY, Amankwah EK, Tseng TS, Qu X, Chen DT, Park JY (2013) SNP-SNP interaction network in angiogenesis genes associated with prostate cancer aggressiveness. PLoS One 8:e59688PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lerman J (1996) Study design in clinical research: sample size estimation and power analysis. Can J Anaesth 43:184–191PubMedCrossRefGoogle Scholar
  27. 27.
    Chen B, Wilkening S, Drechsel M, Hemminki K (2009) SNP_tools: a compact tool package for analysis and conversion of genotype data for MS-Excel. BMC Res Notes 2:214PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Pike N (2010) Using false discovery rates for multiple comparisons in ecology and evolution. Br Ecol Soc 2:278–282Google Scholar
  29. 29.
    Lo YL, Jou YS, Hsiao CF, Chang GC, Tsai YH, Su WC et al (2009) A polymorphism in the APE1 gene promoter is associated with lung cancer risk. Cancer Epidemiol Biomarkers Prev 18:223–229PubMedCrossRefGoogle Scholar
  30. 30.
    Burri RJ, Stock RG, Cesaretti JA, Atencio DP, Peters S, Peters CA et al (2008) Association of single nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the development of adverse effects resulting from radiotherapy for prostate cancer. Radiat Res 170:49–59PubMedCrossRefGoogle Scholar
  31. 31.
    Chang CH, Chiu CF, Wu HC, Tseng HC, Wang CH, Lin CC et al (2008) Significant association of XRCC4 single nucleotide polymorphisms with prostate cancer susceptibility in Taiwanese males. Mol Med Rep 1:525–530PubMedGoogle Scholar
  32. 32.
    Chang JS, Wrensch MR, Hansen HM, Sison JD, Aldrich MC, Quesenberry CP Jr et al (2008) Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer 123:2095–2104PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Jin G, Huang J, Hu Z, Dai J, Tang R, Chen Y et al (2010) Genetic variants in one-carbon metabolism-related genes contribute to NSCLC prognosis in a Chinese population. Cancer 116:5700–5709PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Tian T, Hu Z, Tang J, Wang S, Wang X et al (2008) EGF promoter SNPs, plasma EGF levels and risk of breast cancer in Chinese women. Breast Cancer Res Treat 111:321–327PubMedCrossRefGoogle Scholar
  35. 35.
    Choi JE, Park SH, Kim KM, Lee WK, Kam S, Cha SI et al (2007) Polymorphisms in the epidermal growth factor receptor gene and the risk of primary lung cancer: a case-control study. BMC Cancer 7:199PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Chen YC, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ (2005) Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res 65:11771–11778PubMedCrossRefGoogle Scholar
  37. 37.
    Campa D, Hashibe M, Zaridze D, Szeszenia-Dabrowska N, Mates IN, Janout V et al (2007) Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract. Cancer Causes Control 18:449–455PubMedCrossRefGoogle Scholar
  38. 38.
    Wu J, Lu Y, Ding YB, Ke Q, Hu ZB, Yan ZG et al (2009) Promoter polymorphisms of IL2, IL4, and risk of gastric cancer in a high-risk Chinese population. Mol Carcinog 48:626–632PubMedCrossRefGoogle Scholar
  39. 39.
    Magi-Galluzzi C, Murphy M, Cangi MG, Loda M (1998) Proliferation, apoptosis and cell cycle regulation in prostatic carcinogenesis. Anal Quant Cytol Histol 20:343–350PubMedGoogle Scholar
  40. 40.
    Sivanandam A, Murthy S, Kim SH, Barrack ER, Veer Reddy GP (2010) Role of androgen receptor in prostate cancer cell cycle regulation: interaction with cell cycle regulatory proteins and enzymes of DNA synthesis. Curr Protein Pept Sci 11:451–458PubMedCrossRefGoogle Scholar
  41. 41.
    Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW et al (1999) Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 91:1869–1876PubMedCrossRefGoogle Scholar
  42. 42.
    Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637PubMedCrossRefGoogle Scholar
  43. 43.
    Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M et al (2010) Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet 42:132–136PubMedCrossRefGoogle Scholar
  44. 44.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM et al (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39:989–994PubMedCrossRefGoogle Scholar
  46. 46.
    Terada N, Tsuchiya N, Ma Z, Shimizu Y, Kobayashi T, Nakamura E et al (2008) Association of genetic polymorphisms at 8q24 with the risk of prostate cancer in a Japanese population. Prostate 68:1689–1695PubMedCrossRefGoogle Scholar
  47. 47.
    Chen M, Huang YC, Yang S, Hsu JM, Chang YH, Huang WJ et al (2010) Common variants at 8q24 are associated with prostate cancer risk in Taiwanese men. Prostate 70:502–507PubMedGoogle Scholar
  48. 48.
    Severi G, Hayes VM, Padilla EJ, English DR, Southey MC, Sutherland RL et al (2007) The common variant rs1447295 on chromosome 8q24 and prostate cancer risk: results from an Australian population-based case-control study. Cancer Epidemiol Biomarkers Prev 16:610–612PubMedCrossRefGoogle Scholar
  49. 49.
    Tan YC, Zeigler-Johnson C, Mittal RD, Mandhani A, Mital B, Rebbeck TR et al (2008) Common 8q24 sequence variations are associated with Asian Indian advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 17:2431–2435PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Liu F, Hsing AW, Wang X, Shao Q, Qi J, Ye Y et al (2011) Systematic confirmation study of reported prostate cancer risk-associated single nucleotide polymorphisms in Chinese men. Cancer Sci 102:1916–1920PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE et al (2008) Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 100:962–966PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Knight JA, Skol AD, Shinde A, Hastings D, Walgren RA, Shao J et al (2009) Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood 113:5575–5582PubMedCentralPubMedGoogle Scholar
  53. 53.
    Viadana E, Bross ID, Pickren JW (1978) An autopsy study of the metastatic patterns of human leukemias. Oncology 35:87–96PubMedCrossRefGoogle Scholar
  54. 54.
    Kote-Jarai Z, Singh R, Durocher F, Easton D, Edwards SM, Ardern-Jones A et al (2003) Association between leptin receptor gene polymorphisms and early-onset prostate cancer. BJU Int 92:109–112PubMedCrossRefGoogle Scholar
  55. 55.
    Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401PubMedCrossRefGoogle Scholar
  56. 56.
    Amling CL (2005) Relationship between obesity and prostate cancer. Curr Opin Urol 15:167–171PubMedCrossRefGoogle Scholar
  57. 57.
    Ebling DW, Ruffer J, Whittington R, Vanarsdalen K, Broderick GA, Malkowicz SB et al (1997) Development of prostate cancer after pituitary dysfunction: a report of 8 patients. Urology 49:564–568PubMedCrossRefGoogle Scholar
  58. 58.
    Sen S, Zhou H, Zhang RD, Yoon DS, Vakar-Lopez F, Ito S et al (2002) Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 94:1320–1329PubMedCrossRefGoogle Scholar
  59. 59.
    Matarasso N, Bar-Shira A, Rozovski U, Rosner S, Orr-Urtreger A (2007) Functional analysis of the Aurora Kinase A Ile31 allelic variant in human prostate. Neoplasia 9:707–715PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Buschhorn HM, Klein RR, Chambers SM, Hardy MC, Green S, Bearss D et al (2005) Aurora-A over-expression in high-grade PIN lesions and prostate cancer. Prostate 64:341–346PubMedCrossRefGoogle Scholar
  61. 61.
    Katoh M (2008) Cancer genomics and genetics of FGFR2 (Review). Int J Oncol 33:233–237PubMedGoogle Scholar
  62. 62.
    Tsugane S, Gotlieb SL, Laurenti R, de Souza JM, Watanabe S (1990) Cancer mortality among Japanese residents of the city of Sao Paulo. Braz Int J Cancer 45:436–439CrossRefGoogle Scholar
  63. 63.
    Peng B, Li B, Han Y, Amos CI (2010) Power analysis for case-control association studies of samples with known family histories. Hum Genet 127:699–704PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Liong ML, Lim CR, Yang H, Chao S, Bong CW, Leong WS et al (2012) Blood-based biomarkers of aggressive prostate cancer. PLoS One 7:e45802PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Khamsigan Munretnam
    • 1
  • Livy Alex
    • 1
  • Nurul Hanis Ramzi
    • 1
  • Jagdish Kaur Chahil
    • 1
  • I. S. Kavitha
    • 1
  • Nikman Adli Nor Hashim
    • 1
  • Say Hean Lye
    • 1
  • Sharmila Velapasamy
    • 1
  • Lian Wee Ler
    • 1
  1. 1.INFOVALLEY Group of CompaniesINFOVALLEY® Life Sciences Sdn. Bhd.Seri KembanganMalaysia

Personalised recommendations