Molecular Biology Reports

, Volume 41, Issue 3, pp 1731–1740 | Cite as

Association between type 2 diabetes mellitus-related SNP variants and obesity traits in a Saudi population

  • Nasser M. Al-Daghri
  • Khalid M. Alkharfy
  • Omar S. Al-Attas
  • Soundararajan Krishnaswamy
  • Abdul Khader Mohammed
  • Omar M. Albagha
  • Amal M. Alenad
  • George P. Chrousos
  • Majed S. Alokail


Obesity, commonly measured as body mass index (BMI), has been on a rapid rise around the world and is an underlying cause of several chronic non-communicable diseases, including type 2 diabetes mellitus (T2DM). In addition to the environmental factors, genetic factors may also contribute to the ongoing obesity epidemic in Saudi Arabia. This study investigated the association between variants of 36 previously established T2DM SNPs and obesity phenotypes in a population of Saudi subjects. Study subjects consisted of 975 obese (BMI: ≥30), 825 overweight (25–30) and 423 lean controls (18–25) and of these 927 had a history of T2DM. Subjects were genotyped for 36 SNPs, which have been previously proved to be T2DM linked, using the KASPar method and the means of BMI and waist circumference (WC) corresponding to each of the genotypes were compared by additive, recessive and dominant genetic models. Five and seven of 36 T2DM-related SNPs were significantly associated with the BMI and WC, respectively. Variants of SNPs rs7903146, rs1552224 and rs11642841 in the control group and rs7903146 in T2DM group showed significant association with both BMI and WC. Variant of SNP rs10440833 was significantly associated with BMI in T2DM group of both males [OR = 1.8 (1.0, 3.3); P = 0.04] and females [OR = 2.0 (1.0, 3.9); P = 0.04]. Genetic risk scores explained 19 and 14 % of WC and hip size variance in this population. Variants of a number of established T2DM related SNPs were associated with obesity phenotypes and may be significant hereditary factors in the pathogenesis of T2DM.


Obesity SNP Type 2 diabetes BMI Waist circumference FTO GWA studies 



This study was funded by the Biomarkers Research Program at King Saud University, Riyadh, Saudi Arabia. The authors are grateful to the primary care physicians and nurses of the PHCCs in Riyadh for patient recruitment and sample collection. The authors also thank Mr. Benjamin Vinodson for statistical analysis of the data.

Conflict of interest

The authors have nothing to disclose.

Supplementary material

11033_2014_3022_MOESM1_ESM.doc (55 kb)
Supplementary material 1 (DOC 55 kb)


  1. 1.
    Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Yousef M, Sabico SL, Chrousos GP (2011) Diabetes mellitus type 2 and other chronic non-communicable diseases in the central region, Saudi Arabia (Riyadh cohort 2): a decade of an epidemic. BMC Med 9:76PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Dubois L, Ohm Kyvik K, Girard M, Tatone-Tokuda F, Perusse D, Hjelmborg J, Skytthe A, Rasmussen F, Wright MJ, Lichtenstein P et al (2012) Genetic and environmental contributions to weight, height, and BMI from birth to 19 years of age: an international study of over 12,000 twin pairs. PLoS ONE 7:e30153PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Loos RJ (2012) Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 26:211–226PubMedCrossRefGoogle Scholar
  4. 4.
    Day FR, Loos RJ (2011) Developments in obesity genetics in the era of genome-wide association studies. J Nutrigenet Nutrigenomics 4:222–238PubMedCrossRefGoogle Scholar
  5. 5.
    Rokholm B, Silventoinen K, Tynelius P, Gamborg M, Sorensen TI, Rasmussen F (2011) Increasing genetic variance of body mass index during the Swedish obesity epidemic. PLoS ONE 6:e27135PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Liao GY, An JJ, Gharami K, Waterhouse EG, Vanevski F, Jones KR, Xu B (2012) Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin. Nat Med 18:564–571PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Fall T, Ingelsson E (2012) Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol 382(1):740–757PubMedCrossRefGoogle Scholar
  8. 8.
    Hebebrand J, Volckmar AL, Knoll N, Hinney A (2010) Chipping away the ‘missing heritability’: GIANT steps forward in the molecular elucidation of obesity—but still lots to go. Obes Facts 3:294–303PubMedCrossRefGoogle Scholar
  9. 9.
    Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Hussain T, Yakout S, Vinodson B, Sabico S (2012) Adiponectin gene polymorphisms (T45G and G276T), adiponectin levels and risk for metabolic diseases in an Arab population. Gene 493:142–147PubMedCrossRefGoogle Scholar
  10. 10.
    Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRefGoogle Scholar
  12. 12.
    Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jorgensen T et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–1102PubMedCrossRefGoogle Scholar
  13. 13.
    Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, Been LF, Chia KS, Dimas AS, Hassanali N et al (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet 43:984–989PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C, Bacot F, Balkau B, Belisle A, Borch-Johnsen K et al (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 41:1110–1115PubMedCrossRefGoogle Scholar
  18. 18.
    Kanter R, Caballero B (2012) Global gender disparities in obesity: a review. Adv Nutr 3:491–498PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Linder K, Wagner R, Hatziagelaki E, Ketterer C, Heni M, Machicao F, Stefan N, Staiger H, Haring HU, Fritsche A (2012) Allele summation of diabetes risk genes predicts impaired glucose tolerance in female and obese individuals. PLoS ONE 7:e38224PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Zhao J, Arafat D, Brigham KL, Gibson G (2013) Genetic risk prediction in a small cohort of healthy adults in Atlanta. Genet Res 95:30–37CrossRefGoogle Scholar
  21. 21.
    Al-Hazzaa HM, Abahussain NA, Al-Sobayel HI, Qahwaji DM, Musaiger AO (2012) Lifestyle factors associated with overweight and obesity among Saudi adolescents. BMC Public Health 12:354PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hebebrand J, Wulftange H, Goerg T, Ziegler A, Hinney A, Barth N, Mayer H, Remschmidt H (2000) Epidemic obesity: are genetic factors involved via increased rates of assortative mating? Int J Obes Relat Metab Disord 24:345–353PubMedCrossRefGoogle Scholar
  23. 23.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, Styrkarsdottir U, Gretarsdottir S, Thorlacius S, Jonsdottir I et al (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24PubMedCrossRefGoogle Scholar
  25. 25.
    Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726PubMedCrossRefGoogle Scholar
  26. 26.
    Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, Divisova J, Britton OL, Mohsin S, Allred DC et al (2006) Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 26:9302–9314PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Dabelea D, Dolan LM, D’Agostino R Jr, Hernandez AM, McAteer JB, Hamman RF, Mayer-Davis EJ, Marcovina S, Lawrence JM, Pihoker C et al (2011) Association testing of TCF7L2 polymorphisms with type 2 diabetes in multi-ethnic youth. Diabetologia 54:535–539PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjogren M, Ling C, Eriksson KF, Lethagen AL et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Investig 117:2155–2163PubMedCrossRefGoogle Scholar
  30. 30.
    Liu PH, Chang YC, Jiang YD, Chen WJ, Chang TJ, Kuo SS, Lee KC, Hsiao PC, Chiu KC, Chuang LM (2009) Genetic variants of TCF7L2 are associated with insulin resistance and related metabolic phenotypes in Taiwanese adolescents and Caucasian young adults. J Clin Endocrinol Metab 94:3575–3582PubMedCrossRefGoogle Scholar
  31. 31.
    Palmer ND, Hester JM, An SS, Adeyemo A, Rotimi C, Langefeld CD, Freedman BI, Ng MC, Bowden DW (2011) Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant. Diabetes 60:662–668PubMedCrossRefGoogle Scholar
  32. 32.
    Alsmadi O, Al-Rubeaan K, Mohamed G, Alkayal F, Al-Saud H, Al-Saud NA, Al-Daghri N, Mohammad S, Meyer BF (2008) Weak or no association of TCF7L2 variants with Type 2 diabetes risk in an Arab population. BMC Med Genet 9:72PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Stolerman ES, Manning AK, McAteer JB, Fox CS, Dupuis J, Meigs JB, Florez JC (2009) TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 52:614–620PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, Smink LJ, Lam AC, Ovington NR, Stevens HE et al (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37:1243–1246PubMedCrossRefGoogle Scholar
  35. 35.
    Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182PubMedCrossRefGoogle Scholar
  36. 36.
    Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N, Maeda S, Wen W, Dorajoo R, Go MJ et al (2012) Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat Genet 44:302–306PubMedCrossRefGoogle Scholar
  37. 37.
    Okamura T, Yanobu-Takanashi R, Takeuchi F, Isono M, Akiyama K, Shimizu Y, Goto M, Liang YQ, Yamamoto K, Katsuya T et al (2012) Deletion of CDKAL1 affects high-fat diet-induced fat accumulation and glucose-stimulated insulin secretion in mice, indicating relevance to diabetes. PLoS ONE 7:e49055PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775PubMedCrossRefGoogle Scholar
  39. 39.
    Meyer MR, Clegg DJ, Prossnitz ER, Barton M (2011) Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol (Oxf) 203:259–269CrossRefGoogle Scholar
  40. 40.
    Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19:1262–1270PubMedCentralPubMedGoogle Scholar
  41. 41.
    Wu J, Zhou Y, Zou H, Guo S, Liu J, Lu L, Xu H (2012) Quantitative assessment of the variation in IGF2BP2 gene and type 2 diabetes risk. Acta Diabetol 49(Suppl 1):S87–S97PubMedCrossRefGoogle Scholar
  42. 42.
    Kwak SH, Park KS (2013) Genetics of type 2 diabetes and potential clinical implications. Arch Pharmacal Res 36:167–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nasser M. Al-Daghri
    • 1
    • 2
  • Khalid M. Alkharfy
    • 1
    • 3
  • Omar S. Al-Attas
    • 4
  • Soundararajan Krishnaswamy
    • 1
  • Abdul Khader Mohammed
    • 1
  • Omar M. Albagha
    • 5
  • Amal M. Alenad
    • 6
  • George P. Chrousos
    • 7
  • Majed S. Alokail
    • 1
    • 2
  1. 1.Biomarkers Research Program, Biochemistry Department, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry DepartmentCollege of Science, King Saud UniversityRiyadhKingdom of Saudi Arabia
  3. 3.Department of Clinical Pharmacy, College of PharmacyKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Center of Excellence in Biotechnology ResearchKing Saud UniversityRiyadhKingdom of Saudi Arabia
  5. 5.Molecular Medicine CentreUniversity of EdinburghEdinburghUK
  6. 6.School of Biological SciencesUniversity of SouthamptonSouthamptonUK
  7. 7.First Department of PediatricsAthens University Medical SchoolAthensGreece

Personalised recommendations