DePinho RA (2000) The age of cancer. Nature 408(6809):248–254
CAS
Article
PubMed
Google Scholar
Westermann S, Cheeseman IM, Anderson S, Yates JR 3rd, Drubin DG, Barnes G (2003) Architecture of the budding yeast kinetochore reveals a conserved molecular core. J Cell Biol 163(2):215–222
CAS
Article
PubMed
PubMed Central
Google Scholar
Furuyama S, Biggins S (2007) Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104(37):14706–14711
CAS
Article
PubMed
PubMed Central
Google Scholar
De Wulf P, McAinsh AD, Sorger PK (2003) Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 17(23):2902–2921
Article
PubMed
PubMed Central
Google Scholar
Cheeseman IM, Anderson S, Jwa M, Green EM, Kang J, Yates JR 3rd, Chan CS, Drubin DG, Barnes G (2002) Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111(2):163–172
CAS
Article
PubMed
Google Scholar
McCleland ML, Gardner RD, Kallio MJ, Daum JR, Gorbsky GJ, Burke DJ, Stukenberg PT (2003) The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev 17(1):101–114
CAS
Article
PubMed
PubMed Central
Google Scholar
Kitagawa K, Hieter P (2001) Evolutionary conservation between budding yeast and human kinetochores. Nat Rev Mol Cell Biol 2(9):678–687
CAS
Article
PubMed
Google Scholar
Meraldi P, McAinsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7(3):R23
Article
PubMed
PubMed Central
Google Scholar
Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL, Arellano-Santoyo H, Gonen T, Ranish JA, Asbury CL, Biggins S (2010) Tension directly stabilizes reconstituted kinetochore–microtubule attachments. Nature 468(7323):576–579
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheeseman IM, Enquist-Newman M, Muller-Reichert T, Drubin DG, Barnes G (2001) Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J Cell Biol 152(1):197–212
CAS
Article
PubMed
PubMed Central
Google Scholar
Janke C, Ortiz J, Lechner J, Shevchenko A, Magiera MM, Schramm C, Schiebel E (2001) The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J 20(4):777–791
CAS
Article
PubMed
PubMed Central
Google Scholar
Janke C, Ortiz J, Tanaka TU, Lechner J, Schiebel E (2002) Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J 21(1–2):181–193
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Y, Bachant J, Alcasabas AA, Wang Y, Qin J, Elledge SJ (2002) The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev 16(2):183–197
CAS
Article
PubMed
PubMed Central
Google Scholar
Joglekar AP, Bloom K, Salmon ED (2009) In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 19(8):694–699
CAS
Article
PubMed
PubMed Central
Google Scholar
Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28(17):2511–2531
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127(5):983–997
CAS
Article
PubMed
Google Scholar
Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nat Struct Mol Biol 14(1):54–59
CAS
Article
PubMed
Google Scholar
Wei RR, Sorger PK, Harrison SC (2005) Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci USA 102(15):5363–5367
CAS
Article
PubMed
PubMed Central
Google Scholar
Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J, Wordeman L, Gonen T, Asbury CL, Davis TN (2010) Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J Cell Biol 189(4):713–723
CAS
Article
PubMed
PubMed Central
Google Scholar
Lampert F, Hornung P, Westermann S (2010) The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J Cell Biol 189(4):641–649
CAS
Article
PubMed
PubMed Central
Google Scholar
Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152(2):349–360
CAS
Article
PubMed
PubMed Central
Google Scholar
Euskirchen GM (2002) Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for chromosome segregation in Saccharomyces cerevisiae. Eukaryot Cell 1(2):229–240
CAS
Article
PubMed
PubMed Central
Google Scholar
Pinsky BA, Tatsutani SY, Collins KA, Biggins S (2003) An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev Cell 5(5):735–745
CAS
Article
PubMed
Google Scholar
Kline SL, Cheeseman IM, Hori T, Fukagawa T, Desai A (2006) The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J Cell Biol 173(1):9–17
CAS
Article
PubMed
PubMed Central
Google Scholar
Nekrasov VS, Smith MA, Peak-Chew S, Kilmartin JV (2003) Interactions between centromere complexes in Saccharomyces cerevisiae. Mol Biol Cell 14(12):4931–4946
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR 3rd, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18(18):2255–2268
CAS
Article
PubMed
PubMed Central
Google Scholar
Desai A, Rybina S, Muller-Reichert T, Shevchenko A, Hyman A, Oegema K (2003) KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev 17(19):2421–2435
CAS
Article
PubMed
PubMed Central
Google Scholar
Ortiz J, Stemmann O, Rank S, Lechner J (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13(9):1140–1155
CAS
Article
PubMed
PubMed Central
Google Scholar
Measday V, Hailey DW, Pot I, Givan SA, Hyland KM, Cagney G, Fields S, Davis TN, Hieter P (2002) Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 16(1):101–113
CAS
Article
PubMed
PubMed Central
Google Scholar
Pot I, Measday V, Snydsman B, Cagney G, Fields S, Davis TN, Muller EG, Hieter P (2003) Chl4p and iml3p are two new members of the budding yeast outer kinetochore. Mol Biol Cell 14(2):460–476
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmitzberger F, Harrison SC (2012) RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure. EMBO Rep 13(3):216–222
CAS
Article
PubMed
PubMed Central
Google Scholar
Pasupala N, Easwaran S, Hannan A, Shore D, Mishra K (2012) The SUMO E3 ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae. Eukaryot Cell 11(4):452–462
CAS
Article
PubMed
PubMed Central
Google Scholar
Koshland D, Hieter P (1987) Visual assay for chromosome ploidy. Methods Enzymol 155:351–372
CAS
Article
PubMed
Google Scholar
Hieter P, Mann C, Snyder M, Davis RW (1985) Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40(2):381–392
CAS
Article
PubMed
Google Scholar
Sprague GF Jr (1991) Assay of yeast mating reaction. Methods Enzymol 194:77–93
CAS
Article
PubMed
Google Scholar
Yuen KW, Warren CD, Chen O, Kwok T, Hieter P, Spencer FA (2007) Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci USA 104(10):3925–3930
CAS
Article
PubMed
PubMed Central
Google Scholar
Andersen MP, Nelson ZW, Hetrick ED, Gottschling DE (2008) A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics 179(3):1179–1195
CAS
Article
PubMed
PubMed Central
Google Scholar
Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15(14):1541–1553
CAS
Article
PubMed
Google Scholar
Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, Adler C, Dunn B, Dwight S, Riles L, Mortimer RK et al (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387(6632 Suppl):67–73
CAS
PubMed
PubMed Central
Google Scholar
McMurray MA, Gottschling DE (2003) An age-induced switch to a hyper-recombinational state. Science 301(5641):1908–1911
CAS
Article
PubMed
Google Scholar
Johnston JR (1971) Genetic analysis of spontaneous half-sectored colonies of Saccharomyces cerevisiae. Genet Res 18(2):179–184
CAS
Article
PubMed
Google Scholar
Zimmermann FK (1973) A yeast strain for visual screening for the two reciprocal products of mitotic crossing over. Mutat Res 21(5):263–269
CAS
Article
PubMed
Google Scholar
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S et al (2010) The genetic landscape of a cell. Science 327(5964):425–431
CAS
Article
PubMed
Google Scholar
Measday V, Baetz K, Guzzo J, Yuen K, Kwok T, Sheikh B, Ding H, Ueta R, Hoac T, Cheng B et al (2005) Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc Natl Acad Sci USA 102(39):13956–13961
CAS
Article
PubMed
PubMed Central
Google Scholar
Jaspersen SL, Martin AE, Glazko G, Giddings TH Jr, Morgan G, Mushegian A, Winey M (2006) The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J Cell Biol 174(5):665–675
CAS
Article
PubMed
PubMed Central
Google Scholar
Gardner JM, Smoyer CJ, Stensrud ES, Alexander R, Gogol M, Wiegraebe W, Jaspersen SL (2011) Targeting of the SUN protein Mps3 to the inner nuclear membrane by the histone variant H2A.Z. J Cell Biol 193(3):489–507
CAS
Article
PubMed
PubMed Central
Google Scholar
Conrad MN, Lee CY, Wilkerson JL, Dresser ME (2007) MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104(21):8863–8868
CAS
Article
PubMed
PubMed Central
Google Scholar
Fernius J, Marston AL (2009) Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3. PLoS Genet 5(9):e1000629
Article
PubMed
PubMed Central
Google Scholar
McClelland SE, Borusu S, Amaro AC, Winter JR, Belwal M, McAinsh AD, Meraldi P (2007) The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J 26(24):5033–5047
CAS
Article
PubMed
PubMed Central
Google Scholar
McAinsh AD, Tytell JD, Sorger PK (2003) Structure, function, and regulation of budding yeast kinetochores. Annu Rev Cell Dev Biol 19:519–539
CAS
Article
PubMed
Google Scholar
Nasmyth K (2005) How do so few control so many? Cell 120(6):739–746
CAS
Article
PubMed
Google Scholar
Hagan RS, Sorger PK (2005) Cell biology: the more MAD, the merrier. Nature 434(7033):575–577
CAS
Article
PubMed
Google Scholar
Westermann S, Drubin DG, Barnes G (2007) Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76:563–591
CAS
Article
PubMed
Google Scholar
Yao J, He X (2008) Kinetochore assembly: building a molecular machine that drives chromosome movement. Mol BioSyst 4(10):987–992
CAS
Article
PubMed
Google Scholar
Thomas BJ, Rothstein R (1989) The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123(4):725–738
CAS
PubMed
PubMed Central
Google Scholar
Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(10):953–961
CAS
Article
PubMed
Google Scholar
Mishra K, Shore D (1999) Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr Biol 9(19):1123–1126
CAS
Article
PubMed
Google Scholar
Clark KL, Dignard D, Thomas DY, Whiteway M (1993) Interactions among the subunits of the G protein involved in Saccharomyces cerevisiae mating. Mol Cell Biol 13:1–8
Dorer R, Pryciak PM, Hartwell LH (1995) Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients. J Cell Biol 131(4):845–861
Google Scholar