Molecular Biology Reports

, Volume 41, Issue 1, pp 387–395 | Cite as

Transcriptional regulatory network and protein–protein interaction to reveal the mechanism of pancreatic cancer

  • Hongli Sun
  • Bing Han
  • Xinhua Cheng
  • Kai Ma


The development of pancreatic cancer (PC) may involve the over-expression of oncogenes, inactivation tumor suppressor genes or the deregulation of various signaling proteins. Thus identification and analysis of transcriptional regulatory relationship as well as protein–protein interaction (PPI) in PC to provide deep insights into the pathogenetic mechanism of pancreatic cancer. In this study, we downloaded the gene expression profile of PC from Gene Expression Omnibus and identified differentially expressed genes (DEGs) in PC patients compared with controls. To further understand how these DEGs act together to account for the initiation of pancreatic cancer, a transcriptional regulatory network was constructed to find the notes for GO function and KEGG pathways annotation, aiming to explore the clusters and pathways in PC. A total of 1,821 transcriptional regulatory relationships were identified. Then, a PPI network was constructed and noted by GO and KEGG, and some special modules, clusters and pathways were identified to involved in PC. Finally, we constructed the transcriptional regulatory network and PPI network of pancreatic cancer. Comparing the pathways involved in Transcriptional regulatory network and PPI network, pathway in cancer, PC, p53 signaling pathway, Hematopoietic cell lineage and graft-versus-host disease co-existed in these two network, so we predict these pathways may play key factors in development of cancer.


Pancreatic cancer Transcriptional regulatory network Protein–protein interaction network 



Pancreatic cancer


Kyoto encyclopedia of genes and genomes


Human protein reference database


Protein–protein interaction


Transcriptional factors


Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Hruban RH, Brune K, Fukushima N, Maitra A (2008) Pancreatic intraepithelial neoplasia. Pancreatic Cancer:41–51 Google Scholar
  2. 2.
    Sato N, Goggins M (2006) The role of epigenetic alterations in pancreatic cancer. J Hepato-Biliary-Pancreatic Surg 13(4):286–295CrossRefGoogle Scholar
  3. 3.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, Dimagno EP, Andren-Sandberg A, Domellof L (1993) Pancreatitis and the risk of pancreatic cancer. New Engl J Med 328(20):1433–1437PubMedCrossRefGoogle Scholar
  4. 4.
    Jones S, Zhang X, Parsons DW, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Sci’s STKE 321(5897):1801Google Scholar
  5. 5.
    Yao JC, Eisner MP, Leary C, Dagohoy C, Phan A, Rashid A, Hassan M, Evans DB (2007) Population-based study of islet cell carcinoma. Annals Surg Oncol 14(12):3492–3500CrossRefGoogle Scholar
  6. 6.
    Maitra A, Kern SE, Hruban RH (2006) Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 20(2):211–226PubMedCrossRefGoogle Scholar
  7. 7.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030PubMedCrossRefGoogle Scholar
  8. 8.
    Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15PubMedCrossRefGoogle Scholar
  9. 9.
    Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hosteller R, Cleary K, Signer SH, Davidson N, Baylin S, Devilee P (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342(6250):705–708PubMedCrossRefGoogle Scholar
  10. 10.
    Barbacid M (1987) Ras genes. Annual Rev Biochem 56(1):779–827CrossRefGoogle Scholar
  11. 11.
    Pan J, Roskelley CD, Rojiani M, Auersperg N (1992) Reversal of divergent differentiation by ras oncogene-mediated transformation. Cancer Res 52(15):4269PubMedGoogle Scholar
  12. 12.
    Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H, Lewis GD (1992) Identification of heregulin, a specific activator of p185erbB2. Science 256(5060):1205–1210PubMedCrossRefGoogle Scholar
  13. 13.
    Bell S, Scott N, Cross D, Sagar P, Lewis F, Blair G, Taylor G, Dixon M, Quirke P (1993) Prognostic value of p53 overexpression and c-Ki-ras gene mutations in colorectal cancer. Gastroenterology 104(1):57PubMedGoogle Scholar
  14. 14.
    Song Y, Washington MK, Crawford HC (2010) Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 70(5):2115–2125PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Dong C, Wilhelm D, Koopman P (2004) Sox genes and cancer. Cytogenet Genome Res 105(2–4):442–447PubMedCrossRefGoogle Scholar
  16. 16.
    Wei D, Wang L, He Y, Xiong HQ, Abbruzzese JL, Xie K (2004) Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res 64(6):2030–2038PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao X-M, Wang R-S, Chen L, Aihara K (2008) Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Res 36(9):e48–e48PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18(4):644–652PubMedCrossRefGoogle Scholar
  19. 19.
    Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z, Wang L (2009) FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16(3):259–266PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I (2008) Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology 55(88):2016–2027PubMedGoogle Scholar
  21. 21.
    Matys V, Fricke E, Geffers R, Goessling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV (2003) TRANSFAC®: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32(Suppl 1):D91–D94PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A (2009) Human protein reference database—2009 update. Nucleic Acids Res 37(Suppl 1):D767–D772CrossRefGoogle Scholar
  24. 24.
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ghaneh P, Costello E, Neoptolemos JP (2007) Biology and management of pancreatic cancer. Gut 56(8):1134–1152PubMedCrossRefGoogle Scholar
  26. 26.
    Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363(9414):1049–1057CrossRefGoogle Scholar
  27. 27.
    Pusch C, Hustert E, Pfeifer D, Südbeck P, Kist R, Roe B, Wang Z, Balling R, Blin N, Scherer G (1998) The SOX10/Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum Genet 103(2):115–123PubMedCrossRefGoogle Scholar
  28. 28.
    Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18(1):60–64PubMedCrossRefGoogle Scholar
  29. 29.
    Kadonaga JT, Carner KR, Masiarz FR, Tjian R (1987) Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51(6):1079PubMedCrossRefGoogle Scholar
  30. 30.
    Guazzi S, Price M, De Felice M, Damante G, Mattei MG, Di Lauro R (1990) Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. The EMBOJ 9(11):3631Google Scholar
  31. 31.
    Carey M, Smale ST (2001) Transcriptional regulation in eukaryotes: concepts, strategies, and techniques. Cold Spring Harbor Laboratory Pr, New YorkGoogle Scholar
  32. 32.
    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biliary and VascularShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations