Molecular Biology Reports

, Volume 41, Issue 1, pp 269–283 | Cite as

Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies

  • Nuno Felipe Almeida
  • Susana Trindade Leitão
  • Constantino Caminero
  • Ana Maria Torres
  • Diego Rubiales
  • Maria Carlota Vaz Patto


Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.


Lathyrus spp. Microsatellite Intron-targeted amplified polymorphic Resistance gene analogue Single nucleotide polymorphism Cross-genera amplification Legumes 



The authors thank the CRF-INIA, Madrid, Spain, for supplying the accessions. Mara Lisa Alves for helping in the diversity study analysis. Alberto Martín Sanz for the technical support on the primer pairs supply. This work was supported by Fundação para a Ciência e a Tecnologia through Grants #PEst-OE/EQB/LA0004/2011 and #PTDC/AGR-GPL/103285/2008. NFA and MCVP were supported by Fundação para a Ciência e a Tecnologia (SFRH/BD/44357/2008 and Research Contracts by the Ciência 2008 program respectively).

Supplementary material

11033_2013_2860_MOESM1_ESM.xlsx (52 kb)
ESM 1 Characterization of the different molecular markers tested on Lathyrus cicera and Lathyrus sativus. (XLSX 51 kb)
11033_2013_2860_MOESM2_ESM.xls (41 kb)
ESM 2 Characteristics of sequenced cross-amplified ITAPs, DRs and RGAs in Lathyrus spp. and top BLASTn scores. (XLS 41 kb)


  1. 1.
    Asmussen CB, Liston A (1998) Chloroplast DNA characters, phylogeny, and classification of Lathyrus (Fabaceae). Am J Bot 85(3):387–401PubMedCrossRefGoogle Scholar
  2. 2.
    Belaid Y, Chtourou-Ghorbel N, Marrakchi M, Trifi-Farah N (2006) Genetic diversity within and between populations of Lathyrus genus (Fabaceae) revealed by ISSR markers. Genet Resour Crop Evol 53(7):1413–1418CrossRefGoogle Scholar
  3. 3.
    Ben Brahim N, Combes D, Marrakchi M (2001) Autogamy and allogamy in genus Lathyrus. Lathyrus Lathyrism Newslett 2:21–26Google Scholar
  4. 4.
    Ben Brahim N, Salhi A, Chtourou N, Combes D, Marrakchi M (2002) Isozymic polymorphism and phylogeny of 10 Lathyrus species. Genet Resour Crop Evol 49(4):427–436CrossRefGoogle Scholar
  5. 5.
    Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec. 2012). Accessed 5 Jan 2013
  6. 6.
    Bowcock AM, Ruizlinares A, Tomfohrde J, Minch E, Kidd JR, Cavallisforza LL (1994) High-resolution of human evolutionary trees with polymorphic microsatellites. Nature 368(6470):455–457PubMedCrossRefGoogle Scholar
  7. 7.
    Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 120(4):311–317CrossRefGoogle Scholar
  8. 8.
    Calderón FJ, Vigil MF, Nielsen DC, Benjamin JG, Poss DJ (2012) Water use and yields of no-till managed dryland grasspea and yellow pea under different planting configurations. Field Crops Res 125:179–185CrossRefGoogle Scholar
  9. 9.
    Campbell CG (1997) Promoting the conservation and use of underutilized and neglected crops. Grass pea, Lathyrus sativus L, vol 18. International Plant Genetic Resources Institute, RomeGoogle Scholar
  10. 10.
    Castillo A, Budak H, Varshney RK, Dorado G, Graner A, Hernandez P (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8(1):97PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Choi HK, Mun JH, Kim DJ, Zhu HY, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101(43):15289–15294PubMedCrossRefGoogle Scholar
  12. 12.
    Chowdhury MA, Slinkard AE (1999) Linkage of random amplified polymorphic DNA, isozyme and morphological markers in grasspea (Lathyrus sativus). J Agric Sci 133:389–395CrossRefGoogle Scholar
  13. 13.
    Chowdhury MA, Slinkard AE (2000) Genetic diversity in grasspea (Lathyrus sativus L.). Genet Resour Crop Evol 47(2):163–169CrossRefGoogle Scholar
  14. 14.
    Croft AM, Pang ECK, Taylor PWJ (1999) Molecular analysis of Lathyrus sativus L. (grasspea) and related Lathyrus species. Euphytica 107(3):167–176CrossRefGoogle Scholar
  15. 15.
    Datta S, Kaashyap M, Kumar S (2010) Amplification of chickpea-specific SSR primers in Cajanus species and their validity in diversity analysis. Plant Breed 129(3):334–340CrossRefGoogle Scholar
  16. 16.
    Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4. Accessed 16 July 2011
  17. 17.
    Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9(1):380PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. 19.
    Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author, Seattle, WA Department of Genomic Sciences, University of WashingtonGoogle Scholar
  20. 20.
    Feng SP, Li WG, Huang HS, Wang JY, Wu YT (2009) Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol Breed 23(1):85–97CrossRefGoogle Scholar
  21. 21.
    Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol Breed 21(4):439–454CrossRefGoogle Scholar
  22. 22.
    Fondevilla S, Fernández-Aparicio M, Satovic Z, Emeran AA, Torres AM, Moreno MT, Rubiales D (2010) Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol Breed 25(2):259–272CrossRefGoogle Scholar
  23. 23.
    Fondevilla S, Almeida NF, Satovic Z, Rubiales D, Vaz Patto MC, Cubero J, Torres AM (2011) Identification of common genomic regions controlling resistance to Mycosphaerella pinodes earliness and architectural traits in different pea genetic backgrounds. Euphytica 182(1):43–52CrossRefGoogle Scholar
  24. 24.
    Grela E, Rybiński W, Matras J, Sobolewska S (2012) Variability of phenotypic and morphological characteristics of some Lathyrus sativus L. and Lathyrus cicera L. accessions and nutritional traits of their seeds. Genet Resour Crop Evol 59:1687–1703CrossRefGoogle Scholar
  25. 25.
    Gualtieri G, Kulikova O, Limpens E, Kim DJ, Cook DR, Bisseling T, Geurts R (2002) Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant Mol Biol 50(2):225–235PubMedCrossRefGoogle Scholar
  26. 26.
    Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270(4):315–323CrossRefGoogle Scholar
  27. 27.
    Gusmao M, Siddique KHM, Flower K, Nesbitt H, Veneklaas EJ (2012) Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. J Agron Crop Sci 198(6):430–441CrossRefGoogle Scholar
  28. 28.
    Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110(7):1210–1217PubMedCrossRefGoogle Scholar
  29. 29.
    Gutiérrez-Marcos JF, Vaquero F, Sáenz de Miera LE, Vences FJ (2006) High genetic diversity in a world-wide collection of Lathyrus sativus L. revealed by isozymatic analysis. Plant Genet Resour 4(03):159–171CrossRefGoogle Scholar
  30. 30.
    Guyot R, Lefebvre-Pautigny F, Tranchant-Dubreuil C, Rigoreau M, Hamon P, Leroy T, Hamon S, Poncet V, Crouzillat D, de Kochko A (2012) Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum sp.) and rosid (Vitis vinifera) clades. BMC Genomics 13(1):103PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677PubMedCrossRefGoogle Scholar
  32. 32.
    Hanbury CD, White CL, Mullan BP, Siddique KHM (2000) A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Sci Tech 87(1–2):1–27CrossRefGoogle Scholar
  33. 33.
    Harris-Shultz K, Milla-Lewis S, Brady J (2012) Transferability of SSR and RGA markers developed in Cynodon spp. to Zoysia spp. Plant Mol Biol Rep 30(5):1264–1269CrossRefGoogle Scholar
  34. 34.
    Hougaard BK, Madsen LH, Sandal N, Moretzsohn MD, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179(4):2299–2312PubMedCrossRefGoogle Scholar
  35. 35.
    Kumar J, Pratap A, Solanki RK, Gupta DS, Goyal A, Chaturvedi SK, Nadarajan N, Kumar S (2012) Genomic resources for improving food legume crops. J Agric Sci 150:289–318CrossRefGoogle Scholar
  36. 36.
    Lioi L, Sparvoli F, Sonnante G, Laghetti G, Lupo F, Zaccardelli M (2011) Characterization of Italian grasspea (Lathyrus sativus L.) germplasm using agronomic traits, biochemical and molecular markers. Genet Resour Crop Evol 58(3):425–437CrossRefGoogle Scholar
  37. 37.
    Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129PubMedCrossRefGoogle Scholar
  38. 38.
    Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hènaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111(6):1022–1031PubMedCrossRefGoogle Scholar
  39. 39.
    Martín-Sanz A, Palomo J, Pérez de la Vega M, Caminero C (2012) Characterization of Pseudomonas syringae pv. syringae isolates associated with bacterial blight in Lathyrus spp. and sources of resistance. Eur J Plant Pathol 134:205–216CrossRefGoogle Scholar
  40. 40.
    Minch E, Ruiz Linares A, Goldstein D, Feldman M, Cavalli-Sforza L (1997) MICROSAT, version 1.5 b. Stanford University, StanfordGoogle Scholar
  41. 41.
    Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18(12):613–615PubMedCrossRefGoogle Scholar
  42. 42.
    Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70(12):3321–3323PubMedCrossRefGoogle Scholar
  43. 43.
    Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Swiecicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17(2):73–83PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Parra-Gonzalez L, Aravena-Abarzua G, Navarro-Navarro C, Udall J, Maugham P, Peterson L, Salgo-Garrido H, Maureira Butler I (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13(1):425PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15(10):1275–1287PubMedCrossRefGoogle Scholar
  46. 46.
    Perez JO, Dambier D, Ollitrault P, D’Eeckenbrugge GC, Brottier P, Froelicher Y, Risterucci AM (2006) Microsatellite markers in Carica papaya L.: isolation, characterization and transferability to Vasconcellea species. Mol Ecol Notes 6(1):212–217CrossRefGoogle Scholar
  47. 47.
    Phan HTT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114(3):549–558PubMedCrossRefGoogle Scholar
  48. 48.
    Pozarkova D, Koblizkova A, Roman B, Torres AM, Lucretti S, Lysak M, Dolezel J, Macas J (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45(3):337–345CrossRefGoogle Scholar
  49. 49.
    Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114(6):971–984PubMedCrossRefGoogle Scholar
  50. 50.
    Raji A, Anderson J, Kolade O, Ugwu C, Dixon A, Ingelbrecht I (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9(1):118PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Rao SC, Northup BK (2011) Growth and nutritive value of grass pea in Oklahoma. Agron J 103(6):1692–1696CrossRefGoogle Scholar
  52. 52.
    Schaefer H, Hechenleitner P, Santos-Guerra A, Sequeira MMd, Pennington RT, Kenicer G, Carine MA (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-atlantic island lineages. BMC Evol Biol 12:250PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234PubMedCrossRefGoogle Scholar
  54. 54.
    Shiferaw E, Pè M, Porceddu E, Ponnaiah M (2011) Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breed 30(2):789–797PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Skiba B, Ford R, Pang ECK (2003) Amplification and detection of polymorphic sequence-tagged sites in Lathyrus sativus. Plant Mol Biol Rep 21(4):391–404CrossRefGoogle Scholar
  56. 56.
    Skiba B, Ford R, Pang ECK (2004) Construction of a linkage map based on a Lathyrus sativus backcross population and preliminary investigation of QTLs associated with resistance to ascochyta blight. Theor Appl Genet 109:1726–1735PubMedCrossRefGoogle Scholar
  57. 57.
    Smýkal P, Kalendar R, Ford R, Macas J, Griga M (2009) Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity 103(2):157–167PubMedCrossRefGoogle Scholar
  58. 58.
    Smýkal P, Kenicer G, Flavell AJ, Corander J, Kosterin O, Redden RJ, Ford R, Coyne CJ, Maxted N, Ambrose MJ, Ellis NTH (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Res 9(1):4–18CrossRefGoogle Scholar
  59. 59.
    Tavoletti S, Iommarini L (2007) Molecular marker analysis of genetic variation characterizing a grasspea (Lathyrus sativus) collection from central Italy. Plant Breed 126:607–611CrossRefGoogle Scholar
  60. 60.
    Torres AM, Weeden NF, Martin A (1993) Linkage among Isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85(8):937–945PubMedCrossRefGoogle Scholar
  61. 61.
    Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55PubMedCrossRefGoogle Scholar
  62. 62.
    Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10:523PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Vaz Patto MC, Rubiales D (2009) Identification and characterization of partial resistance to rust in a germplasm collection of Lathyrus sativus L. Plant Breed 128(5):495–500CrossRefGoogle Scholar
  64. 64.
    Vaz Patto MC, Fernández-Aparicio M, Moral A, Rubiales D (2006) Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus sativus. Plant Breed 125:308–310CrossRefGoogle Scholar
  65. 65.
    Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147(1–2):133–147CrossRefGoogle Scholar
  66. 66.
    Vaz Patto MC, Fernández-Aparicio M, Moral A, Rubiales D (2007) Resistance reaction to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus cicera from Iberian origin. Genet Resour Crop Evol 54(7):1517–1521CrossRefGoogle Scholar
  67. 67.
    Vaz Patto MC, Fernández-Aparicio M, Moral A, Rubiales D (2009) Pre and posthaustorial resistance to rusts in Lathyrus cicera L. Euphytica 165(1):27–34CrossRefGoogle Scholar
  68. 68.
    Vaz Patto MC, Hanbury CD, Moorhem MV, Lambein F, Ochatt SJ, Rubiales D (2011) Grass pea. In: Kole C (ed) Genetics, genomics and breeding of cool season grain legumes. Genetics, genomics and breeding of crop plants. Science Publishers, Enfield, pp 151–204Google Scholar
  69. 69.
    Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91(11):1846–1862PubMedCrossRefGoogle Scholar
  70. 70.
    Xu Y, Ma RC, Xie H, Liu JT, Cao MQ (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47(6):1091–1104PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang Y, Sledge MK, Bouton JH (2007) Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor Appl Genet 114:1367–1378PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nuno Felipe Almeida
    • 1
  • Susana Trindade Leitão
    • 1
  • Constantino Caminero
    • 2
  • Ana Maria Torres
    • 3
  • Diego Rubiales
    • 4
  • Maria Carlota Vaz Patto
    • 1
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.Instituto Tecnológico Agrario, Consejería de Agricultura y GanaderíaJunta de Castilla y LeónValladolidSpain
  3. 3.IFAPA, Centro Alameda del ObispoCórdobaSpain
  4. 4.Institute for Sustainable AgricultureCSICCórdobaSpain

Personalised recommendations