Skip to main content
Log in

Targeted disruption of the sheep MSTN gene by engineered zinc-finger nucleases

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Prior to the development of zinc-finger nuclease technology, genetic manipulation by gene targeting achieved limited success in mammals, with the exception of mice and rat. Although ZFNs demonstrated highly effective gene targeted disruption in various model organisms, the activity of ZFNs in large domestic animals may be very low, and the probability of identifying ZFN-mediated positive targeted disruption events is small. In this paper, we used the context-dependent assembly method to synthesize two pairs of ZFNs targeted to the sheep MSTN gene. We verified the activity of these ZFNs using an mRFP-MBS-eGFP dual-fluorescence reporter system in HEK293T cells and, according to the expression level of eGFP, we obtained a pair of ZFNs that can recognize and cut the targeted MSTN site in the reporter vector. The activity of ZFN was increased by cold stimulation at 30 °C and by mutant the wildtype FokI in ZFN with its counterpart Sharkeys. Finally, the ZF-Sharkeys and reporter vector were cotransfected into sheep fetal fibroblasts and two MSTN mutant cell lines, identified by flow cytometry and sequencing, were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44(3):419–428

    Article  CAS  PubMed  Google Scholar 

  2. Robertson EJ (1991) Using embryonic stem cells to introduce mutations into the mouse germ line. Biol Reprod 44(2):238–245

    Article  CAS  PubMed  Google Scholar 

  3. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci 91(13):6064–6068

    Article  CAS  PubMed  Google Scholar 

  4. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175

    CAS  PubMed  Google Scholar 

  5. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102(6):2232–2237

    Article  CAS  PubMed  Google Scholar 

  6. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Meyer M, de Angelis MH, Wurst W, Kühn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci 107(34):15022–15026

    Article  CAS  PubMed  Google Scholar 

  9. Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M (2010) Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol 40(10):759–765

    Article  CAS  PubMed  Google Scholar 

  10. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci 108(17):7052–7057

    Article  CAS  PubMed  Google Scholar 

  11. Chu X, Zhang Z, Yabut J, Horwitz S, Levorse J, XQ Li, Zhu L, Lederman H, Ortiga R, Strauss J (2012) Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol Pharmacol 81(2):220–227

    Article  CAS  PubMed  Google Scholar 

  12. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci 104(9):3055–3060

    Article  CAS  PubMed  Google Scholar 

  13. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci 108(29):12013–12017

    Article  CAS  PubMed  Google Scholar 

  14. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 6(6):e21045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21(11):1638–1640

    Article  CAS  PubMed  Google Scholar 

  16. Dong Z, Ge J, Li K, Xu Z, Liang D, Li J, Li J, Jia W, Li Y, Dong X, Cao S, Wang X, Pan J, Zhao Q (2011) Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS ONE 6(12):e28897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90

    Article  CAS  PubMed  Google Scholar 

  18. Stinckens A, Georges M, Buys N (2011) Mutations in the Myostatin gene leading to hypermuscularity in mammals: indications for a similar mechanism in fish? Anim Genet 42(3):229–234

    Article  CAS  PubMed  Google Scholar 

  19. Chelh I, Picard B, Hocquette J, Cassar-Malek I (2011) Myostatin inactivation induces a similar muscle molecular signature in double-muscled cattle as in mice. Animal 5(02):278–286

    Article  CAS  PubMed  Google Scholar 

  20. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y (2010) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69

    Article  PubMed Central  PubMed  Google Scholar 

  21. Guo J, Gaj T, Barbas CF (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400(1):96–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hu LY, Cui CC, Song YJ, Wang XG, Jin YP, Wang AH, Zhang Y (2012) An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA. Biotechnol Lett 34(7):1251–1255

    Article  CAS  PubMed  Google Scholar 

  23. Van den Hoff M, Moorman A, Lamers WH (1992) Electroporation in ‘intracellular’ buffer increases cell survival. Nucleic Acids Res 20(11):2902

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE (2002) Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20(3):251–255

    Article  CAS  PubMed  Google Scholar 

  25. Kim H, Um E, Cho SR, Jung C, Kim H, Kim JS (2011) Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods 8(11):941–943

    Article  CAS  PubMed  Google Scholar 

  26. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci 94(23):12457–12461

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Hua S, Lan J, Song Y, He Y, Quan F, Zhang Y (2010) Site-directed mutagenesis of MSTN gene by gene targeting in Qinchuan cattle. Sheng wu gong cheng xue bao 26(3):410–416 Chinese Journal of Biotechnology

    CAS  PubMed  Google Scholar 

  28. Zheng YL, Ma HM, Zheng YM, Wang YS, Zhang BW, He XY, He XN, Liu J, Zhang Y (2012) Site-directed mutagenesis of the myostatin gene in ovine fetal myoblast cells in vitro. Res Vet Sci 93(2):763–769

    Article  CAS  PubMed  Google Scholar 

  29. Kim JS, Lee HJ, Carroll D (2010) Genome editing with modularly assembled zinc-finger nucleases. Nat Methods 7(2):91

    Article  CAS  PubMed  Google Scholar 

  30. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31(2):294–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Perez-Pinera P, Ousterout DG, Brown MT, Gersbach CA (2012) Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res 40(8):3741–3752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Perez C, Guyot V, Cabaniols JP, Gouble A, Micheaux B, Smith J, Leduc S, Paques F, Duchateau P (2005) Factors affecting double-strand break-induced homologous recombination in mammalian cells. Biotechniques 39(1):109–115

    Article  CAS  PubMed  Google Scholar 

  33. Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7(6):459–460

    Article  CAS  PubMed  Google Scholar 

  34. Davies B, Davies G, Preece C, Puliyadi R, Szumska D, Bhattacharya S (2013) Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PLoS ONE 8(3):e60216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci 95(9):5172–5177

    Article  CAS  PubMed  Google Scholar 

  36. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the genetically modified organisms breeding major projects of China (2013XZ08008-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Wang, L., Ren, G. et al. Targeted disruption of the sheep MSTN gene by engineered zinc-finger nucleases. Mol Biol Rep 41, 209–215 (2014). https://doi.org/10.1007/s11033-013-2853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2853-3

Keywords

Navigation