Molecular Biology Reports

, Volume 40, Issue 10, pp 5869–5874 | Cite as

Lack of association of Lysyl oxidase (LOX) gene polymorphisms with intracranial aneurysm in a south Indian population

  • Sanish Sathyan
  • Linda Koshy
  • K. R. Sarada Lekshmi
  • H. V. Easwer
  • S. Premkumar
  • Jacob P. Alapatt
  • Suresh Nair
  • R. N. Bhattacharya
  • Moinak Banerjee


Intracranial aneurysm (IA) accounts for 85 % of haemorrhagic stroke and is mainly caused due to weakening of arterial wall. Lysyl oxidase (LOX) is a cuproenzyme involved in cross linking structural proteins collagen and elastin, thus providing structural stability to artery. Using a case–control study design, we tested the hypothesis whether the variants in LOX gene flanking the two LD block, can increase risk of aSAH among South Indian patients, either independently, or by interacting with other risk factors of the disease. SNPs were genotyped by fluorescence-based competitive allele-specific PCR (KASPar) chemistry. We selected 200 radiologically confirmed aneurysmal cases and 235 ethnically and age and gender matched controls from the Dravidian Malayalam speaking population of South India. We observed marked interethnic differences in the genotype distribution of LOX variants when compared to Japanese and African populations. However, there was no significant association with any of the LOX variants with IA. This study also could not observe any significant role of LOX polymorphisms in influencing IA either directly or indirectly through its confounding factors such as hypertension and gender in South Indian population.


Intracranial aneurysm Subarachnoid haemorrhage Lysyl oxidase (LOXSNP India 



SS acknowledges the Council of Scientific and Industrial Research CSIR), Government of India for providing junior research fellowship. We also acknowledge all the patients and their family members who cooperated in this study.

Supplementary material

11033_2013_2693_MOESM1_ESM.ppt (106 kb)
Supplementary material 1 (PPT 106 kb)
11033_2013_2693_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (DOC 36 kb)


  1. 1.
    Bederson JB, Awad IA, Wiebers DO, Piepgras D, Haley EC Jr et al (2000) Recommendations for the management of patients with unruptured intracranial aneurysms: a statement for healthcare professionals from the Stroke Council of the American Heart Association. Circulation 102:2300–2308PubMedCrossRefGoogle Scholar
  2. 2.
    Ingall T, Asplund K, Mähönen M, Bonita R (2000) A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31:1054–1061PubMedCrossRefGoogle Scholar
  3. 3.
    Rinkel GJE, Djibuti M, Algra A, Van Gijn J (1998) Prevalence and risk of rupture of intracranial aneurysms a systematic review. Stroke 29:251–256PubMedCrossRefGoogle Scholar
  4. 4.
    Ramamurthi B (1969) Incidence of intracranial aneurysms in India. J Neurosurg 30:154PubMedCrossRefGoogle Scholar
  5. 5.
    Banerjee A (2000) Pathology of cerebrovascular disease. Neurol India 48:305PubMedGoogle Scholar
  6. 6.
    Kapoor K, Kak V (2003) Incidence of intracranial aneurysms in northwest Indian population. Neurol India 51:22PubMedGoogle Scholar
  7. 7.
    Woo D, Broderick J. Genetics of intracranial aneurysm; 2002. Elsevier. pp 24–34Google Scholar
  8. 8.
    Krischek B, Inoue I (2006) The genetics of intracranial aneurysms. J Hum Genet 51:587–594PubMedCrossRefGoogle Scholar
  9. 9.
    Stehbens WE (1989) Etiology of intracranial berry aneurysms. J Neurosurg 70:823–831PubMedCrossRefGoogle Scholar
  10. 10.
    Glynn L (1940) Medial defects in the circle of Willis and their relation to aneurysm formation. J Pathol Bacteriol 51:213–222CrossRefGoogle Scholar
  11. 11.
    Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. Am J Neuroradiol 32:264–270PubMedCrossRefGoogle Scholar
  12. 12.
    Kagan HM, Li W (2002) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–672CrossRefGoogle Scholar
  13. 13.
    Hazama F, Hashimoto N (1987) Annotation: an animal model of cerebral aneurysms. Neuropathol Appl Neurobiol 13:77–90PubMedCrossRefGoogle Scholar
  14. 14.
    Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R et al (2009) Reduced collagen biosynthesis is the hallmark of cerebral aneurysm contribution of interleukin-1β and nuclear factor-κB. Arterioscler Thromb Vasc Biol 29:1080–1086PubMedCrossRefGoogle Scholar
  15. 15.
    Onda H, Kasuya H, Yoneyama T, Takakura K, Hori T et al (2001) Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet 69:804–819PubMedCrossRefGoogle Scholar
  16. 16.
    Trackman PC, Bedell-Hogan D, Tang J, Kagan H (1992) Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. J Biol Chem 267:8666–8671PubMedGoogle Scholar
  17. 17.
    Ma L, Song H, Zhang M, Zhang D (2011) Lysyl oxidase G473A polymorphism is associated with increased risk of coronary artery diseases. DNA Cell Biol 30:1033–1037PubMedCrossRefGoogle Scholar
  18. 18.
    Koshy L, Easwer HV, Premkumar S, Alapatt JP, Marthanda Pillai A, Nair S, Bhattacharya RN, Banerjee M (2010) Risk factors attributable to aneurysmal subarachnoid hemorrhage in Indian population. Cerebrovasc Dis 29:268–274PubMedCrossRefGoogle Scholar
  19. 19.
    Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66:87–98PubMedCrossRefGoogle Scholar
  20. 20.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  21. 21.
    Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229PubMedCrossRefGoogle Scholar
  22. 22.
    Yoneyama T, Kasuya H, Onda H, Akagawa H, Jinnai N, Nakajima T, Hori T, Inoue I (2003) Association of positional and functional candidate genes FGF1, FBN2, and LOX on 5q31 with intracranial aneurysm. J Hum Genet 48:309–314PubMedGoogle Scholar
  23. 23.
    Bilguvar K, Yasuno K, Niemelä M, Ruigrok YM, von und zu Fraunberg M et al (2008) Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 40:1472–1477PubMedCrossRefGoogle Scholar
  24. 24.
    Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B et al (2010) Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 42:420–425PubMedCrossRefGoogle Scholar
  25. 25.
    Akiyama K, Narita A, Nakaoka H, Cui T, Takahashi T et al (2010) Genome-wide association study to identify genetic variants present in Japanese patients harboring intracranial aneurysms. J Hum Genet 55:656–661PubMedCrossRefGoogle Scholar
  26. 26.
    Low SK, Takahashi A, Cha PC, Zembutsu H, Kamatani N et al (2012) Genome-wide association study for intracranial aneurysm in the Japanese population identifies three candidate susceptible loci and a functional genetic variant at EDNRA. Hum Mol Genet 21:2102–2110PubMedCrossRefGoogle Scholar
  27. 27.
    Rodríguez C, Martínez-González J, Raposo B, Alcudia JF, Guadall A et al (2008) Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 79:7–13PubMedCrossRefGoogle Scholar
  28. 28.
    Raposo B, Rodríguez C, Martínez-González J, Badimon L (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177:1–8PubMedCrossRefGoogle Scholar
  29. 29.
    Rodríguez C, Raposo B, Martínez-González J, Casaní L, Badimon L (2002) Low density lipoproteins downregulate lysyl oxidase in vascular endothelial cells and the arterial wall. Arterioscler Thromb Vasc Biol 22:1409–1414PubMedCrossRefGoogle Scholar
  30. 30.
    Boak AM, Roy R, Berk J, Taylor L, Polgar P et al (1994) Regulation of lysyl oxidase expression in lung fibroblasts by transforming growth factor-beta 1 and prostaglandin E2. Am J Respir Cell Mol Biol 11:751PubMedCrossRefGoogle Scholar
  31. 31.
    Rodríguez C, Alcudia J, Martínez-González J, Raposo B, Navarro M et al (2008) Lysyl oxidase (LOX) down-regulation by TNFα: a new mechanism underlying TNFα-induced endothelial dysfunction. Atherosclerosis 196:558–564PubMedCrossRefGoogle Scholar
  32. 32.
    Ooshima A, Midorikawa O (1977) Increased lysyl oxidase activity in blood vessels of hypertensive rats and effect of beta-aminopropionitrile on arteriosclerosis. Jpn Circ J 41:1337PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sanish Sathyan
    • 1
  • Linda Koshy
    • 1
  • K. R. Sarada Lekshmi
    • 1
  • H. V. Easwer
    • 2
  • S. Premkumar
    • 3
  • Jacob P. Alapatt
    • 3
  • Suresh Nair
    • 3
  • R. N. Bhattacharya
    • 3
  • Moinak Banerjee
    • 1
  1. 1.Human Molecular Genetics LaboratoryRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
  2. 2.Department of NeurosurgerySree Chitra Tirunal Institute for Medical Science and TechnologyThiruvananthapuramIndia
  3. 3.Department of NeurosurgeryCalicut Medical CollegeCalicutIndia

Personalised recommendations