Skip to main content
Log in

Lack of association of Lysyl oxidase (LOX) gene polymorphisms with intracranial aneurysm in a south Indian population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Intracranial aneurysm (IA) accounts for 85 % of haemorrhagic stroke and is mainly caused due to weakening of arterial wall. Lysyl oxidase (LOX) is a cuproenzyme involved in cross linking structural proteins collagen and elastin, thus providing structural stability to artery. Using a case–control study design, we tested the hypothesis whether the variants in LOX gene flanking the two LD block, can increase risk of aSAH among South Indian patients, either independently, or by interacting with other risk factors of the disease. SNPs were genotyped by fluorescence-based competitive allele-specific PCR (KASPar) chemistry. We selected 200 radiologically confirmed aneurysmal cases and 235 ethnically and age and gender matched controls from the Dravidian Malayalam speaking population of South India. We observed marked interethnic differences in the genotype distribution of LOX variants when compared to Japanese and African populations. However, there was no significant association with any of the LOX variants with IA. This study also could not observe any significant role of LOX polymorphisms in influencing IA either directly or indirectly through its confounding factors such as hypertension and gender in South Indian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bederson JB, Awad IA, Wiebers DO, Piepgras D, Haley EC Jr et al (2000) Recommendations for the management of patients with unruptured intracranial aneurysms: a statement for healthcare professionals from the Stroke Council of the American Heart Association. Circulation 102:2300–2308

    Article  PubMed  CAS  Google Scholar 

  2. Ingall T, Asplund K, Mähönen M, Bonita R (2000) A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31:1054–1061

    Article  PubMed  CAS  Google Scholar 

  3. Rinkel GJE, Djibuti M, Algra A, Van Gijn J (1998) Prevalence and risk of rupture of intracranial aneurysms a systematic review. Stroke 29:251–256

    Article  PubMed  CAS  Google Scholar 

  4. Ramamurthi B (1969) Incidence of intracranial aneurysms in India. J Neurosurg 30:154

    Article  PubMed  CAS  Google Scholar 

  5. Banerjee A (2000) Pathology of cerebrovascular disease. Neurol India 48:305

    PubMed  CAS  Google Scholar 

  6. Kapoor K, Kak V (2003) Incidence of intracranial aneurysms in northwest Indian population. Neurol India 51:22

    PubMed  CAS  Google Scholar 

  7. Woo D, Broderick J. Genetics of intracranial aneurysm; 2002. Elsevier. pp 24–34

  8. Krischek B, Inoue I (2006) The genetics of intracranial aneurysms. J Hum Genet 51:587–594

    Article  PubMed  Google Scholar 

  9. Stehbens WE (1989) Etiology of intracranial berry aneurysms. J Neurosurg 70:823–831

    Article  PubMed  CAS  Google Scholar 

  10. Glynn L (1940) Medial defects in the circle of Willis and their relation to aneurysm formation. J Pathol Bacteriol 51:213–222

    Article  Google Scholar 

  11. Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. Am J Neuroradiol 32:264–270

    Article  PubMed  CAS  Google Scholar 

  12. Kagan HM, Li W (2002) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–672

    Article  Google Scholar 

  13. Hazama F, Hashimoto N (1987) Annotation: an animal model of cerebral aneurysms. Neuropathol Appl Neurobiol 13:77–90

    Article  PubMed  CAS  Google Scholar 

  14. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R et al (2009) Reduced collagen biosynthesis is the hallmark of cerebral aneurysm contribution of interleukin-1β and nuclear factor-κB. Arterioscler Thromb Vasc Biol 29:1080–1086

    Article  PubMed  CAS  Google Scholar 

  15. Onda H, Kasuya H, Yoneyama T, Takakura K, Hori T et al (2001) Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet 69:804–819

    Article  PubMed  CAS  Google Scholar 

  16. Trackman PC, Bedell-Hogan D, Tang J, Kagan H (1992) Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. J Biol Chem 267:8666–8671

    PubMed  CAS  Google Scholar 

  17. Ma L, Song H, Zhang M, Zhang D (2011) Lysyl oxidase G473A polymorphism is associated with increased risk of coronary artery diseases. DNA Cell Biol 30:1033–1037

    Article  PubMed  CAS  Google Scholar 

  18. Koshy L, Easwer HV, Premkumar S, Alapatt JP, Marthanda Pillai A, Nair S, Bhattacharya RN, Banerjee M (2010) Risk factors attributable to aneurysmal subarachnoid hemorrhage in Indian population. Cerebrovasc Dis 29:268–274

    Article  PubMed  Google Scholar 

  19. Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66:87–98

    Article  PubMed  Google Scholar 

  20. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  21. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  22. Yoneyama T, Kasuya H, Onda H, Akagawa H, Jinnai N, Nakajima T, Hori T, Inoue I (2003) Association of positional and functional candidate genes FGF1, FBN2, and LOX on 5q31 with intracranial aneurysm. J Hum Genet 48:309–314

    PubMed  CAS  Google Scholar 

  23. Bilguvar K, Yasuno K, Niemelä M, Ruigrok YM, von und zu Fraunberg M et al (2008) Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 40:1472–1477

    Article  PubMed  CAS  Google Scholar 

  24. Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B et al (2010) Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 42:420–425

    Article  PubMed  CAS  Google Scholar 

  25. Akiyama K, Narita A, Nakaoka H, Cui T, Takahashi T et al (2010) Genome-wide association study to identify genetic variants present in Japanese patients harboring intracranial aneurysms. J Hum Genet 55:656–661

    Article  PubMed  Google Scholar 

  26. Low SK, Takahashi A, Cha PC, Zembutsu H, Kamatani N et al (2012) Genome-wide association study for intracranial aneurysm in the Japanese population identifies three candidate susceptible loci and a functional genetic variant at EDNRA. Hum Mol Genet 21:2102–2110

    Article  PubMed  CAS  Google Scholar 

  27. Rodríguez C, Martínez-González J, Raposo B, Alcudia JF, Guadall A et al (2008) Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 79:7–13

    Article  PubMed  Google Scholar 

  28. Raposo B, Rodríguez C, Martínez-González J, Badimon L (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177:1–8

    Article  PubMed  CAS  Google Scholar 

  29. Rodríguez C, Raposo B, Martínez-González J, Casaní L, Badimon L (2002) Low density lipoproteins downregulate lysyl oxidase in vascular endothelial cells and the arterial wall. Arterioscler Thromb Vasc Biol 22:1409–1414

    Article  PubMed  Google Scholar 

  30. Boak AM, Roy R, Berk J, Taylor L, Polgar P et al (1994) Regulation of lysyl oxidase expression in lung fibroblasts by transforming growth factor-beta 1 and prostaglandin E2. Am J Respir Cell Mol Biol 11:751

    Article  PubMed  CAS  Google Scholar 

  31. Rodríguez C, Alcudia J, Martínez-González J, Raposo B, Navarro M et al (2008) Lysyl oxidase (LOX) down-regulation by TNFα: a new mechanism underlying TNFα-induced endothelial dysfunction. Atherosclerosis 196:558–564

    Article  PubMed  Google Scholar 

  32. Ooshima A, Midorikawa O (1977) Increased lysyl oxidase activity in blood vessels of hypertensive rats and effect of beta-aminopropionitrile on arteriosclerosis. Jpn Circ J 41:1337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SS acknowledges the Council of Scientific and Industrial Research CSIR), Government of India for providing junior research fellowship. We also acknowledge all the patients and their family members who cooperated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moinak Banerjee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 106 kb)

Supplementary material 2 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathyan, S., Koshy, L., Sarada Lekshmi, K.R. et al. Lack of association of Lysyl oxidase (LOX) gene polymorphisms with intracranial aneurysm in a south Indian population. Mol Biol Rep 40, 5869–5874 (2013). https://doi.org/10.1007/s11033-013-2693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2693-1

Keywords

Navigation