Skip to main content
Log in

Identification of human patatin-like phospholipase domain-containing protein 1 and a mutant in human cervical cancer HeLa cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recently members of mammalian patatin-like phospholipase domain containing (PNPLA) protein family have attracted attention for their critical roles in diverse aspects of lipid metabolism and signal pathway. Until now little has been known about the characteristics of PNPLA1. Here, the full length coding cDNA sequence of human PNPLA1 (hPNPLA1) was cloned for the first time, which encoded a polypeptide with 532 amino acids containing the whole patatin domain. Tissue expression profiles analysis showed that low mRNA levels of hPNPLA1 existed in various tissues, except high expression in the digestive system, bone marrow and spleen. Subcellular distribution of hPNPLA1 tagged with green fluorescence protein mainly localized to lipid droplets. Furthermore, a nonsense mutation of PNPLA1 in human cervical cancer HeLa cells was identified. The hPNPLA1 mutant encoded a protein of 412 amino acids without the C-terminal domain and did not colocalize to lipid droplets, which suggested that the C-terminal region of hPNPLA1 affected lipid droplet binding. These results identified hPNPLA1 and a mutant in HeLa cells, and provided insights into the structure and function of PNPLA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rydel TJ, Williams JM, Krieger E et al (2003) The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser–Asp catalytic dyad. Biochemistry 42:6696–6708

    Article  PubMed  CAS  Google Scholar 

  2. Wilson PA, Gardner SD, Lambie NM et al (2006) Characterization of the human patatin-like phospholipase family. J Lipid Res 47:1940–1949

    Article  PubMed  CAS  Google Scholar 

  3. Schneider G, Neuberger G, Wildpaner M et al (2006) Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinform 7:164

    Article  Google Scholar 

  4. Saarela J, Jung G, Hermann M et al (2008) The patatin-like lipase family in Gallus gallus. BMC Genomics 9:281

    Article  PubMed  Google Scholar 

  5. Kienesberger PC, Oberer M, Lass A et al (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 50:S63–S68

    Article  PubMed  Google Scholar 

  6. Bateman A, Coin L, Durbin R et al (2004) The PFAM protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  7. Lake AC, Sun Y, Li JL et al (2005) Expression, regulation, and triglyceride hydrolase activity of adiponutrin family members. J Lipid Res 46:2477–2487

    Article  PubMed  CAS  Google Scholar 

  8. Baulande S, Langlois C (2010) Proteins sharing PNPLA domain, a new family of enzymes regulating lipid metabolism. Med Sci (Paris) 26:177–184

    Article  Google Scholar 

  9. Grall A, Guaguere E, Planchais S et al (2012) PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet 44:140–147

    Article  PubMed  CAS  Google Scholar 

  10. Johansson LE, Johansson LM, Danielsson P et al (2009) Genetic variance in the adiponutrin gene family and childhood obesity. PLoS One 4:E5327

    Article  PubMed  Google Scholar 

  11. Kim JY, Tillison K, Lee JH et al (2006) The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-α in 3T3-L1 adipocytes and is a target for transactivation by PPARγ. Am J Physiol Endocrinol Metab 291:115–127

    Article  Google Scholar 

  12. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  13. Chen R, Chang PA, Long DX et al (2007) Down-regulation of neuropathy target esterase by protein kinase C activation with PMA stimulation. Mol Cell Biochem 302:179–185

    Article  PubMed  CAS  Google Scholar 

  14. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  15. Kienesberger PC, Lass A, Preiss-Landl K et al (2008) Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 283:5908–5917

    Article  PubMed  CAS  Google Scholar 

  16. Lopez AJ (1998) Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet 32:279–305

    Article  PubMed  CAS  Google Scholar 

  17. Holste D, Ohler U (2008) Strategies for identifying RNA splicing regulatory motifs and predicting alternative splicing events. PLoS Comput Biol 4:e21

    Article  PubMed  Google Scholar 

  18. Esko JD, Raetz CR (1980) Mutants of Chinese hamster ovary cells with altered membrane phospholipid composition. Replacement of phosphatidylinositol by phosphatidylglycerol in a myo-inositol auxotroph. J Biol Chem 255:4474–4480

    PubMed  CAS  Google Scholar 

  19. Tauchi-Sato K, Ozeki S, Houjou T et al (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    Article  PubMed  CAS  Google Scholar 

  20. Guo Y, Walther TC, Rao M et al (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661

    Article  PubMed  CAS  Google Scholar 

  21. Krahmer N, Guo Y, Wilfling F et al (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP: phosphocholine cytidylyltransferase. Cell Metab 14:504–515

    Article  PubMed  CAS  Google Scholar 

  22. Moessinger C, Kuerschner L, Spandl J et al (2011) Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 286:21330–21339

    Article  PubMed  CAS  Google Scholar 

  23. Hörl G, Wagner A, Cole LK et al (2011) Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem 286:17338–17350

    Article  PubMed  Google Scholar 

  24. Kobayashi K, Inoguchi T, Maeda Y et al (2008) The lack of the C-terminal domain of adipose triglyceride lipase causes neutral lipid storage disease through impaired interactions with lipid droplets. J Clin Endocrinol Metab 93:2877–2884

    Article  PubMed  CAS  Google Scholar 

  25. Schweiger M, Schoiswohl G, Lass A et al (2008) The C-terminal region of human adipose triglyceride lipase affects enzyme activity and lipid droplet binding. J Biol Chem 283:17211–17220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants from the National Natural Science Foundation of China (No. 31271523) and the Natural Science Foundation Project of CQ CSTC (CSTC, 2010BB5410, 2011JJA10110, 2013jcyjA10005), and by the Program for Excellent Talents in Chongqing Higher Education Institutions (to PA Chang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping-An Chang or Yi-Jun Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, PA., Sun, YJ., Huang, FF. et al. Identification of human patatin-like phospholipase domain-containing protein 1 and a mutant in human cervical cancer HeLa cells. Mol Biol Rep 40, 5597–5605 (2013). https://doi.org/10.1007/s11033-013-2661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2661-9

Keywords

Navigation