Skip to main content
Log in

GCPII modulates oxidative stress and prostate cancer susceptibility through changes in methylation of RASSF1, BNIP3, GSTP1 and Ec-SOD

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glutamate carboxypeptidase II (GCPII) haplotypes were found to influence susceptibility to prostate cancer. In the current study, we have elucidated the impact of these haplotypes on the expression of PSMA, BNIP3, Ec-SOD, GSTP1 and RASSF1 genes to understand the epigenetic basis of oxidative stress and prostate cancer risk. Expression analysis was carried out by RT-PCR. Bisulphite treated DNA was subjected to MS-PCR and COBRA for epigenetic studies. Plasma MDA and glutathione levels were measured. In prostate cancer, upregulation of BNIP3 (204.4 ± 23.77 vs. 143.9 ± 16.42 %, p = 0.03); and downregulation of Ec-SOD (105.8 ± 13.69 vs. 176.3 ± 21.1 %, p = 0.027) and RASSF1A (16.67 ± 16.0 vs. 90.8 ± 8.5 %, p = 0.0048) was observed. Hypomethylation of BNIP3 (31.25 ± 16.19 vs. 45.70 ± 2.42 %, p < 0.0001), hypermethylation of Ec-SOD (71.4 ± 6.75 vs. 10.0 ± 3.78 %, p < 0.0001) and RASSF1 (76.25 ± 12.53 vs. 30.0 ± 8.82 %, p = 0.0077) was observed in prostate cancer. The gene expression signature of PSMA, BNIP3, Ec-SOD, GSTP1, clearly demarcated cases and controls (AUC = 0.89 in the ROC curve). D191V variant of GCPII showed positive association with oxidative stress and inverse association with Ec-SOD expression. H475Y variant showed positive association with Ec-SOD expression and inverse association with oxidative stress. R190W variant was found to reduce oxidative stress by increasing glutathione levels. GCPII genetic variants contribute to increased oxidative stress and prostate cancer risk by modulating the CpG island methylation of Ec-SOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amin KS, Banerjee PP (2012) The cellular functions of RASSF1A and its inactivation in prostate cancer. J Carcinog 11:13

    Article  Google Scholar 

  2. Kuzmin I, Gillespie JW, Protopopov A, Geil L, Dreijerink K, Yang Y, Vocke CD et al (2002) The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer Res 62:3498–3502

    PubMed  CAS  Google Scholar 

  3. Liu L, Yoon JH, Dammann R, Pfeifer GP (2002) Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene 21:6835–6840

    Article  PubMed  CAS  Google Scholar 

  4. Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zöchbauer-Müller S, Farinas AJ et al (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8:514–519

    PubMed  CAS  Google Scholar 

  5. Ahmed H (2010) Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. Biomark Cancer 2:17–33

    Article  CAS  Google Scholar 

  6. Daniūnaitė K, Berezniakovas A, Jankevičius F, Laurinavičius A, Lazutka JR, Jarmalaitė S (2011) Frequent methylation of RASSF1 and RARB in urine sediments from patients with early stage prostate cancer. Medicina (Kaunas) 47(3):147–153

    Google Scholar 

  7. Sunami E, Shinozaki M, Higano CS, Wollman R, Dorff TB, Tucker SJ et al (2009) Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem 55(3):559–567

    Article  PubMed  CAS  Google Scholar 

  8. Yoon HY, Kim YW, Kang HW, Kim WT, Yun SJ, Lee SC et al (2012) DNA methylation of GSTP1 in human prostate tissues: pyrosequencing analysis. Korean J Urol 53(3):200–205

    Article  PubMed  Google Scholar 

  9. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61:6669–6673

    PubMed  CAS  Google Scholar 

  10. Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB (2008) BNIP3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 295(5):H2025–H2031

    Article  PubMed  CAS  Google Scholar 

  11. Wajed SA, Laird PW, DeMeester TR (2001) DNA methylation: an alternative pathway to cancer. Ann Surg 234(1):10–20

    Article  PubMed  CAS  Google Scholar 

  12. Rong N, Selhub J, Goldin BR, Rosenberg IH (1991) Bacterially synthesized folate in rat large intestine is incorporated into host tissue folyl polyglutamates. J Nutr 121(12):1955–1959

    PubMed  CAS  Google Scholar 

  13. Camilo E, Zimmerman J, Mason JB, Golner B, Russell R, Selhub J, Rosenberg IH (1996) Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology 110(4):991–998

    Article  PubMed  CAS  Google Scholar 

  14. Halsted CH, Ling EH, Luthi-Carter R, Villanueva JA, Gardner JM, Coyle JT (1998) Folylpoly-gamma-glutamate carboxypeptidase from pig jejunum. Molecular characterization and relation to glutamate carboxypeptidase II. J Biol Chem 273:20417–20424

    Article  PubMed  CAS  Google Scholar 

  15. Halsted CH, Wong DH, Peerson JM, Warden CH, Refsum H, Smith AD, Nygard OK et al (2007) Relations of glutamate carboxypeptidase II (GCPII) polymorphisms to folate and homocysteine concentrations and to scores of cognition, anxiety and depression in a homogeneous Norwegian population: the Hordaland Homocysteine Study. Am J Clin Nutr 86:514–521

    PubMed  CAS  Google Scholar 

  16. Divyya S, Naushad SM, Addlagatta A, Murthy PV, Reddy ChR, Digumarti RR, Gottumukkala SR et al (2012) Paradoxical role of C1561T glutamate carboxypeptidase II (GCPII) genetic polymorphism in altering disease susceptibility. Gene 497(2):273–279

    Article  PubMed  CAS  Google Scholar 

  17. Divyya S, Naushad SM, Addlagatta A, Murthy PV, Reddy ChR, Digumarti RR, Gottumukkala SR et al (2012) Association of glutamate carboxypeptidase II (GCPII) haplotypes with breast and prostate cancer risk. Gene 516(1):76–81

    Article  PubMed  Google Scholar 

  18. Smith TR, Miller MS, Lohman KK, Case LD, Hu JJ (2003) DNA damage and breast cancer risk. Carcinogenesis 24(5):883–889

    Article  PubMed  CAS  Google Scholar 

  19. Xu X, Gammon MD, Zhang H, Wetmur JG, Rao M, Teitelbaum SL et al (2007) Polymorphisms of folate-metabolizing genes and risk of breast cancer in a population-based study. Carcinogenesis 28(7):1504–1509

    Article  PubMed  CAS  Google Scholar 

  20. Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2(4):903–917

    Article  PubMed  CAS  Google Scholar 

  21. Majumdar S, Mukherjee S, Maiti A, Karmakar S, Das AS, Mukherjee M et al (2009) Folic acid or combination of folic acid and vitamin B(12) prevents short-term arsenic trioxide-induced systemic and mitochondrial dysfunction and DNA damage. Environ Toxicol 24(4):377–387

    Article  PubMed  CAS  Google Scholar 

  22. Bagnyukova TV, Powell CL, Pavliv O, Tryndyak VP, Pogribny IP (2008) Induction of oxidative stress and DNA damage in rat brain by a folate/methyl-deficient diet. Brain Res 1237:44–51

    Article  PubMed  CAS  Google Scholar 

  23. Siow YL, Au-Yeung KK, Woo CWOK (2006) Homocysteine stimulates phosphorylation of NADPH oxidase p47phox and p67phox subunits in monocytes via protein kinase Cbeta activation. Biochem J 398(1):73–82

    Article  PubMed  CAS  Google Scholar 

  24. Cavallaro RA, Fuso A, Nicolia V, Scarpa S (2010) S-adenosylmethionine prevents oxidative stress and modulates glutathione metabolism in TgCRND8 mice fed a B-vitamin deficient diet. J Alzheimers Dis 20(4):997–1002

    PubMed  CAS  Google Scholar 

  25. Krebs J (2002) McCance and Widdowson’s. The composition of foods: summary edition, 6th summary ed. The Royal Society of Chemistry/Food Standards Agency, Cambridge/London

    Google Scholar 

  26. U.S. Department of Agriculture, Agricultural Research Service (2006) USDA national nutrient database for standard reference, Release 18. Nutrient Data Laboratory Home Page [http://www.ars.usda.gov/ba/bhnrc/ndl]

  27. Naushad SM, Reddy CA, Rupasree Y, Pavani A, Digumarti RR, Gottumukkala SR, Kuppusamy P et al (2011) Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys 61(3):715–723

    Article  PubMed  CAS  Google Scholar 

  28. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16(2):359–364

    Article  PubMed  CAS  Google Scholar 

  29. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  PubMed  CAS  Google Scholar 

  30. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11

    Article  PubMed  CAS  Google Scholar 

  31. Cutler RG (1992) Genetic stability and oxidative stress: common mechanisms in aging and cancer. EXS 62:31–46

    PubMed  CAS  Google Scholar 

  32. Suzuki H, Nishizawa T, Tsugawa H, Mogami S, Hibi T (2012) Roles of oxidative stress in stomach disorders. J Clin Biochem Nutr 50(1):35–39

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi M, Miyata R, Tanuma N (2012) Oxidative stress in developmental brain disorders. Adv Exp Med Biol 724:278–290

    Article  PubMed  CAS  Google Scholar 

  34. Iynem AH, Alademir AZ, Obek C, Kural AR, Konukoğlu D, Akçay T (2004) The effect of prostate cancer and antiandrogenic therapy on lipid peroxidation and antioxidant systems. Int Urol Nephrol 36(1):57–62

    Article  PubMed  Google Scholar 

  35. Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA (2008) Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol 21(12):1421–1427

    Article  PubMed  CAS  Google Scholar 

  36. Stroes ES, van Faassen EE, Yo M, Martasek P, Boer P, Govers R, Rabelink TJ (2000) Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ Res 86(11):1129–1134

    Article  PubMed  CAS  Google Scholar 

  37. Yoo NJ, Kim MS, Park SW, Seo SI, Song SY, Lee JY, Lee SH (2010) Expression analysis of caspase-6, caspase-9 and BNIP3 in prostate cancer. Tumori 96(1):138–142

    PubMed  Google Scholar 

  38. Murphy TM, Sullivan L, Lane C, O’Connor L, Barrett C, Hollywood D, Lynch T et al (2011) In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer. Prostate 71(1):1–17

    Article  PubMed  CAS  Google Scholar 

  39. Metukuri MR, Beer-Stolz D, Namas RA, Dhupar R, Torres A, Loughran PA et al (2009) Expression and subcellular localization of BNIP3 in hypoxic hepatocytes and liver stress. Am J Physiol Gastrointest Liver Physiol 296(3):G499–G509

    Article  PubMed  CAS  Google Scholar 

  40. Naushad SM, Prayaga A, Digumarti RR, Gottumukkala SR, Kutala VK (2012) Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) expression is epigenetically regulated by one-carbon metabolism in invasive duct cell carcinoma of breast. Mol Cell Biochem 361:189–195

    Article  PubMed  CAS  Google Scholar 

  41. Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J et al (2001) Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20(12):1509–1518

    Article  PubMed  CAS  Google Scholar 

  42. Mao WM, Li P, Zheng QQ, Wang CC, Ge MH, Hu FJ et al (2011) Hypermethylation-modulated down regulation of RASSF1A expression is associated with the progression of esophageal cancer. Arch Med Res 42(3):182–188

    Article  PubMed  CAS  Google Scholar 

  43. Daniunaite K, Berezniakovas A, Jankevičius F, Laurinavičius A, Lazutka JR, Jarmalaitė S (2011) Frequent methylation of RASSF1 and RARB in urine sediments from patients with early stage prostate cancer. Medicina (Kaunas) 47(3):147–153

    Google Scholar 

  44. Tian Y, Hou Y, Zhou X, Cheng H, Zhou R (2011) Tumor suppressor RASSF1A promoter: p53 binding and methylation. PLoS ONE 6(2):e17017

    Article  PubMed  CAS  Google Scholar 

  45. Gezginci-Oktayoglu S, Bolkent S (2012) Ras signaling in NGF reduction and TNF-α-related pancreatic β cell apoptosis in hyperglycemic rats. Apoptosis 17(1):14–24

    Article  PubMed  CAS  Google Scholar 

  46. Kraft P, Wacholder S, Cornelis MC, Hu FB, Hayes RB, Thomas G et al (2009) Beyond odds ratios-communicating disease risk based on genetic pro-files. Nat Rev Genet 10(4):264–269

    Article  PubMed  CAS  Google Scholar 

  47. Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomark Prev 13(4):511–519

    CAS  Google Scholar 

  48. Smith AD, Kim YI, Refsum H (2008) Is folic acid good for everyone? Am J Clin Nutr 87(3):517–533

    PubMed  CAS  Google Scholar 

  49. Kim YI (2006) Folate: a magic bullet or a double edged sword for colorectal cancer prevention? Gut 55(10):1387–1389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant funded by Indian Council of Medical Research (ICMR), New Delhi (Ref No. 5/13/32/2007), and Lady Tata Junior Research Fellowship awarded to Ms. Shree Divyya. We would also like to thank all the patients and the family members who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Kutala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divyya, S., Naushad, S.M., Murthy, P.V.L.N. et al. GCPII modulates oxidative stress and prostate cancer susceptibility through changes in methylation of RASSF1, BNIP3, GSTP1 and Ec-SOD . Mol Biol Rep 40, 5541–5550 (2013). https://doi.org/10.1007/s11033-013-2655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2655-7

Keywords

Navigation