Molecular Biology Reports

, Volume 40, Issue 9, pp 5483–5490 | Cite as

BDNF and TNF-α polymorphisms in memory

  • B. S. Yogeetha
  • L. M. Haupt
  • K. McKenzie
  • H. G. Sutherland
  • R. K. Okolicsyani
  • R. A. Lea
  • B. H. Maher
  • R. C. K. Chan
  • D. H. K. Shum
  • L. R. Griffiths


Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.


Brain-derived neurotropic factor (BDNF) Memory Genotype Retrospective memory Prospective memory Gene interactions 



This research was supported by the Genomics Research Centre (GRC), Griffith Health Institute (GHI) and the School of Medical Science at Griffith University Gold Coast campus.


  1. 1.
    Schwartz BL (2011) Memory : foundations and applications. SAGE, Thousand oaksGoogle Scholar
  2. 2.
    Squire LR, Kandel ER (1999) Memory: from mind to molecules. Scientific American Library (Freeman and Co.), New YorkGoogle Scholar
  3. 3.
    Scheffler I (1965) Conditions of knowledge. Scott Foresman and Company, GlenviewGoogle Scholar
  4. 4.
    Lu ZL et al (2005) Fast decay of iconic memory in observers with mild cognitive impairments. Proc Natl Acad Sci USA 102(5):1797–1802PubMedCrossRefGoogle Scholar
  5. 5.
    Schoeke A, Bittlin T et al (2007) Cognitive psychology and cognitive neuroscience. Books4x Company, ISBN 1449986438Google Scholar
  6. 6.
    Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22(3):123–131PubMedCrossRefGoogle Scholar
  7. 7.
    Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642PubMedCrossRefGoogle Scholar
  8. 8.
    Ashe PC, Berry MD, Boulton AA (2001) Schizophrenia, a neurodegenerative disorder with neurodevelopmental antecedents. Prog Neuropsychopharmacol Biol Psychiatry 25(4):691–707PubMedCrossRefGoogle Scholar
  9. 9.
    Aloe L et al (1999) Learning abilities, NGF and BDNF brain levels in two lines of TNF-alpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Res 840(1–2):125–137PubMedCrossRefGoogle Scholar
  10. 10.
    de Quervain DJ et al (2003) A functional genetic variation of the 5-HT2a receptor affects human memory. Nat Neurosci 6(11):1141–1142PubMedCrossRefGoogle Scholar
  11. 11.
    Egan MF et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269PubMedCrossRefGoogle Scholar
  12. 12.
    Weinstock-Guttman B et al (2011) The rs2030324 SNP of brain-derived neurotrophic factor (BDNF) is associated with visual cognitive processing in multiple sclerosis. Pathophysiology 18(1):43–52PubMedCrossRefGoogle Scholar
  13. 13.
    Bekinschtein P et al (2008) BDNF and memory formation and storage. Neuroscientist 14(2):147–156PubMedCrossRefGoogle Scholar
  14. 14.
    Pruunsild P et al (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90(3):397–406PubMedCrossRefGoogle Scholar
  15. 15.
    Papassotiropoulos A et al (2006) Common Kibra alleles are associated with human memory performance. Science 314(5798):475–478PubMedCrossRefGoogle Scholar
  16. 16.
    Banner H et al (2011) The brain-derived neurotrophic factor Val66Met polymorphism is associated with reduced functional magnetic resonance imaging activity in the hippocampus and increased use of caudate nucleus-dependent strategies in a human virtual navigation task. Eur J Neurosci 33(5):968–977PubMedCrossRefGoogle Scholar
  17. 17.
    Cerasa A et al (2010) The effects of BDNF Val66Met polymorphism on brain function in controls and patients with multiple sclerosis: an imaging genetic study. Behav Brain Res 207(2):377–386PubMedCrossRefGoogle Scholar
  18. 18.
    Gasic GP et al (2009) BDNF, relative preference, and reward circuitry responses to emotional communication. Am J Med Genet B 5(6):762–781CrossRefGoogle Scholar
  19. 19.
    Hashimoto R et al (2008) Dose-dependent effect of the Val66Met polymorphism of the brain-derived neurotrophic factor gene on memory-related hippocampal activity. Neurosci Res 61(4):360–367PubMedCrossRefGoogle Scholar
  20. 20.
    Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89(3):312–323PubMedCrossRefGoogle Scholar
  21. 21.
    Schofield PR et al (2009) Disturbances in selective information processing associated with the BDNF Val66Met polymorphism: evidence from cognition, the P300 and fronto-hippocampal systems. Biol Psychol 80(2):176–188PubMedCrossRefGoogle Scholar
  22. 22.
    Dennis NA et al (2011) Brain-derived neurotrophic factor val66met polymorphism and hippocampal activation during episodic encoding and retrieval tasks. Hippocampus 21(9):980–989PubMedGoogle Scholar
  23. 23.
    Harris SE et al (2006) The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Mol Psychiatry 11(5):505–513PubMedCrossRefGoogle Scholar
  24. 24.
    Dodds CM et al (2013) Overestimation of the effects of the BDNF val66met polymorphism on episodic memory-related hippocampal function: a critique of a recent meta-analysis. Neurosci Biobehav Rev 21(13):00026–00027Google Scholar
  25. 25.
    Das UN (2003) Can memory be improved? A discussion on the role of ras, GABA, acetylcholine, NO, insulin, TNF-alpha, and long-chain polyunsaturated fatty acids in memory formation and consolidation. Brain Dev 25(4):251–261PubMedCrossRefGoogle Scholar
  26. 26.
    Golan H et al (2004) Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex 14(1):97–105PubMedCrossRefGoogle Scholar
  27. 27.
    Chen LE et al (1996) Tumor necrosis factor promotes motor functional recovery in crushed peripheral nerve. Neurochem Int 29(2):197–203PubMedCrossRefGoogle Scholar
  28. 28.
    Dawson DA, Martin D, Hallenbeck JM (1996) Inhibition of tumor necrosis factor-alpha reduces focal cerebral ischemic injury in the spontaneously hypertensive rat. Neurosci Lett 218(1):41–44PubMedCrossRefGoogle Scholar
  29. 29.
    Eddy LJ, Goeddel DV, Wong GH (1992) Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 184(2):1056–1059PubMedCrossRefGoogle Scholar
  30. 30.
    Rothwell NJ, Luheshi GN (1996) Brain TNF: damage limitation or damaged reputation? Nat Med 2(7):746–747PubMedCrossRefGoogle Scholar
  31. 31.
    Donges B et al (2012) Role of the apolipoprotein E and catechol-O-methyltransferase genes in prospective and retrospective memory traits. Gene 506(1):135–140PubMedCrossRefGoogle Scholar
  32. 32.
    Wechsler D, Matarazzo JD (1972) Wechsler’s measurement and appraisal of adult intelligence. Williams & Wilkins, BaltimoreGoogle Scholar
  33. 33.
    Benedict RH et al (1998) Hopkins Verbal Learning Test–revised: normative data and analysis of inter-form and test-retest reliability. The Clinical Neuropsychologist 12(1):43–55CrossRefGoogle Scholar
  34. 34.
    Brandt J (1991) The Hopkins Verbal Learning Test: development of a new memory test with six equivalent forms. The Clinical Neuropsychologist 5(2):125–142CrossRefGoogle Scholar
  35. 35.
    Shum DH, O’Gorman JG, Eadie K (1999) Normative data for a new memory test: the Shum Visual Learning Test. Clin Neuropsychol 13(2):121–135PubMedCrossRefGoogle Scholar
  36. 36.
    Wechsler D (1987) Wechsler memory scale: WMS-R. Psychological Corp., Harcourt Brace Jovanovich, San AntonioGoogle Scholar
  37. 37.
    Chau LT et al (2007) Reliability and normative data for the comprehensive assessment of prospective memory (CAPM). Neuropsychol Rehabil 17(6):707–722PubMedCrossRefGoogle Scholar
  38. 38.
    Fleming J et al (2009) Validity of the comprehensive assessment of prospective memory (CAPM) for use with adults with traumatic brain injury. Brain Impairment 10(01):34–44CrossRefGoogle Scholar
  39. 39.
    Raskin SA (2009) Memory for Intentions Screening Test: psychometric properties and clinical evidence. Brain Impair 10(1):23–33CrossRefGoogle Scholar
  40. 40.
    Woods SP et al (2008) Psychometric characteristics of the memory for Intentions Screening Test. Clin Neuropsychol 22(5):864–878PubMedCrossRefGoogle Scholar
  41. 41.
    Raskin SA (2009) Memory for intentions screening test: psychometric properties and clinical evidence. Brain Impair 10(01):23–33CrossRefGoogle Scholar
  42. 42.
    Crawford JR et al (2003) The Prospective and Retrospective Memory Questionnaire (PRMQ): normative data and latent structure in a large non-clinical sample. Memory 11(3):261–275PubMedCrossRefGoogle Scholar
  43. 43.
    Gajewski PD et al (2011) The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol Aging 32(12):30CrossRefGoogle Scholar
  44. 44.
    Klauer KC, Zhao Z (2004) Double dissociations in visual and spatial short-term memory. J Exp Psychol Gen 133(3):355–381PubMedCrossRefGoogle Scholar
  45. 45.
    Hori T et al (2013) Visual reproduction on the wechsler memory scale-revised as a predictor of Alzheimer’s disease in Japanese patients with mild cognitive impairments. Dement Geriatr Cogn Disord 35(3–4):165–176PubMedCrossRefGoogle Scholar
  46. 46.
    Larrabee GJ et al (1985) Construct validity of various memory testing procedures. J Clin Exp Neuropsychol 7(3):239–250PubMedCrossRefGoogle Scholar
  47. 47.
    Sala SD et al (1999) Pattern span: a tool for unwelding visuo-spatial memory. Neuropsychologia 37(10):1189–1199PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. S. Yogeetha
    • 1
  • L. M. Haupt
    • 1
  • K. McKenzie
    • 1
  • H. G. Sutherland
    • 1
  • R. K. Okolicsyani
    • 1
  • R. A. Lea
    • 1
  • B. H. Maher
    • 1
  • R. C. K. Chan
    • 3
  • D. H. K. Shum
    • 2
  • L. R. Griffiths
    • 1
  1. 1.Genomics Research Centre, Griffith Health Institute and School of Medical ScienceGriffith UniversityGold CoastAustralia
  2. 2.Behavioural Basis of Health Program, Griffith Health Institute and School of Applied PsychologyGriffith UniversityGold CoastAustralia
  3. 3.Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina

Personalised recommendations