Skip to main content

Advertisement

Log in

Cancer targeting gene-viro-therapy for pancreatic cancer using oncolytic adenovirus ZD55-IL-24 in immune-competent mice

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer targeting gene-viro-therapy (CTGVT) may prove to be an effective treatment for pancreatic cancer (PC). This study was intended to explore the anti-tumor effect of ZD55-IL-24 (oncolytic adenovirus ZD55 harboring IL-24) on PC in immune-competent mice. The expression of gene harbored by oncolytic adenovirus ZD55 in PC cells was detected by reporter-gene assays. The in vitro anti PC ability of ZD55-IL-24 was tested by MTT, crystal violet staining and apoptosis assays. The in vivo anti PC effect of ZD55-IL-24 was further observed in an immune-competent mice model by detecting anti-tumor immunity and induction of apoptosis. The expression of gene harbored by ZD55 in PC cells was significantly higher than that harbored by the replicated-deficient adenovirus, and the amount of gene expression was time-dependent and dose-dependent. Both ZD55-IL-24 and ZD55 inhibited PC cells growth, but the anti-tumor effect of ZD55-IL-24 was significantly stronger than that of ZD55, and the ability of ZD55-IL-24 in inducing PC apoptosis was significantly stronger than that of ZD55. The tumor-forming rate of group ZD55-IL-24 was the lowest, and the tumor-growing rate was also significantly lower than that of group ZD55 in immune-competent PC models. Moreover, ZD55-IL-24 mediated more anti-cancer immunity effects by induction of stronger T-lymphocytes response to PC cells, higher levels of γ-IFN and IL-6 cytokines. ZD55-IL-24-mediated CTGVT could inhibit PC growth not only by inducing oncolysis and apoptosis but enhancing the anti-cancer immune effects by inducing T cell response to PC and up-regulating γ-IFN and IL-6 cytokine in immune-competent mice. This may serve as a candidate therapeutic approach for the treatment of PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA: a cancer journal for clinicians 60(5):277–300

    Article  Google Scholar 

  2. Tong D, Zhou Y, Chen W, Deng Y, Li L, Jia Z, Qi D (2012) T cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and susceptibility to pancreatic cancer. Mol Biol Rep 39(11):9941–9946

    Article  PubMed  CAS  Google Scholar 

  3. Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY, Qian QJ, Liu XY (2003) An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 13(6):481–489

    Article  PubMed  CAS  Google Scholar 

  4. Mahoney DJ, Stojdl DF (2012) Fighting fire with fire: rewiring tumor cells for oncolytic virotherapy. Future Oncol 8(3):219–221

    Article  PubMed  Google Scholar 

  5. Bais S, Bartee E, Rahman MM, McFadden G, Cogle CR (2012) Oncolytic virotherapy for hematological malignancies. Adv Virol 2012:186512

    PubMed  Google Scholar 

  6. Patil SS, Gentschev I, Nolte I, Ogilvie G, Szalay AA (2012) Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients. J Transl Med 10:3

    Article  PubMed  Google Scholar 

  7. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274(5286):373–376

    Article  PubMed  CAS  Google Scholar 

  8. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, McCormick F (2004) Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6(6):611–623

    Article  PubMed  Google Scholar 

  9. Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, Emdad L, Bachelor MA, Grant S, Curiel DT, Dent P, Fisher PB (2006) mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 111(3):596–628

    Article  PubMed  CAS  Google Scholar 

  10. Chang S, Yang J, Chen W, Xie Y, Sheng W (2011) Antitumor activity of an adenovirus harboring human IL-24 in colon cancer. Mol Biol Rep 38(1):395–401

    Article  PubMed  CAS  Google Scholar 

  11. Lebedeva IV, Su ZZ, Vozhilla N, Chatman L, Sarkar D, Dent P, Athar M, Fisher PB (2008) Mechanism of in vitro pancreatic cancer cell growth inhibition by melanoma differentiation-associated gene-7/interleukin-24 and perillyl alcohol. Cancer Res 68(18):7439–7447

    Article  PubMed  CAS  Google Scholar 

  12. Lebedeva IV, Sarkar D, Su ZZ, Gopalkrishnan RV, Athar M, Randolph A, Valerie K, Dent P, Fisher PB (2006) Molecular target-based therapy of pancreatic cancer. Cancer Res 66(4):2403–2413

    Article  PubMed  CAS  Google Scholar 

  13. Liu XY, Li HG, Yang DQ, Gu JF (2011) Strategy of cancer targeting gene-viro-therapy (CTGVT)—a trend in both cancer gene therapy and cancer virotherapy. Curr Pharm Biotechnol 13(9):1761–1767

    Article  Google Scholar 

  14. Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L, Wang Y, Zhang J, Zhang Z, Huiwang J, Qian Q, Qian C, Liu X (2005) Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 16(7):845–858

    Article  PubMed  CAS  Google Scholar 

  15. Qian W, Liu J, Tong Y, Yan S, Yang C, Yang M, Liu X (2008) Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis. Leukemia 22(2):361–369

    Article  PubMed  CAS  Google Scholar 

  16. Yang C, Tong Y, Ni W, Liu J, Xu W, Li L, Liu X, Meng H, Qian W (2010) Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the antileukemia activity in vitro and in vivo. Cancer Gene Ther 17(2):109–119

    Article  PubMed  CAS  Google Scholar 

  17. Zhong S, Yu D, Wang Y, Qiu S, Wu S, Liu XY (2010) An armed oncolytic adenovirus ZD55-IL-24 combined with ADM or DDP demonstrated enhanced antitumor effect in lung cancer. Acta Oncol 49(1):91–99

    Article  PubMed  CAS  Google Scholar 

  18. Jiang G, Zhang L, Xin Y, Pei DS, Wei ZP, Liu YQ, Zheng JN (2012) Conditionally replicating adenoviruses carrying mda-7/IL-24 for cancer therapy. Acta Oncol 51(3):285–292

    Article  PubMed  CAS  Google Scholar 

  19. Kanai R, Rabkin SD, Yip S, Sgubin D, Zaupa CM, Hirose Y, Louis DN, Wakimoto H, Martuza RL (2012) Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells. J Natl Cancer Inst 104(1):42–55

    Article  PubMed  CAS  Google Scholar 

  20. Corbett TH, Roberts BJ, Leopold WR, Peckham JC, Wilkoff LJ, Griswold DP Jr, Schabel FM Jr (1984) Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 44(2):717–726

    PubMed  CAS  Google Scholar 

  21. Xu B, Zheng WY, Jin DY, Wang DS, Liu XY, Qin XY (2012) Treatment of pancreatic cancer using an oncolytic virus harboring the lipocalin-2 gene. Cancer 118(21):5217–5226

    Article  PubMed  CAS  Google Scholar 

  22. Breitbach CJ, Burke J, Jonker D, Stephenson J, Haas AR, Chow LQ, Nieva J, Hwang TH, Moon A, Patt R, Pelusio A, Le Boeuf F, Burns J, Evgin L, De Silva N, Cvancic S, Robertson T, Je JE, Lee YS, Parato K, Diallo JS, Fenster A, Daneshmand M, Bell JC, Kirn DH (2011) Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477(7362):99–102

    Article  PubMed  CAS  Google Scholar 

  23. Schmitt CA (2011) Immunotherapy: seek and destroy: oncolytic virus shows promise in phase I trial. Nat Rev Clin Oncol 8(11):630

    Article  PubMed  Google Scholar 

  24. Mohyeldin A, Chiocca EA (2012) Gene and viral therapy for glioblastoma: a review of clinical trials and future directions. Cancer J 18(1):82–88

    Article  PubMed  CAS  Google Scholar 

  25. Melcher A, Parato K, Rooney CM, Bell JC (2011) Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 19(6):1008–1016

    Article  PubMed  CAS  Google Scholar 

  26. Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, Mhashilkar A, Parker K, Vukelja S, Richards D, Hood J, Coffee K, Nemunaitis J (2005) Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 11(1):149–159

    Article  PubMed  CAS  Google Scholar 

  27. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N, Netto G, Rich D, Mhashilkar A, Parker K, Coffee K, Ramesh R, Ekmekcioglu S, Grimm EA, van Hood Wart J, Merritt J, Chada S (2005) Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther 11(1):160–172

    Article  PubMed  CAS  Google Scholar 

  28. Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, Das SK, Kim K, Lee SG, Park MA, Yacoub A, Rahmani M, Emdad L, Dmitriev IP, Wang XY, Sarkar D, Grant S, Dent P, Curiel DT, Fisher PB (2010) mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 21(5):381–391

    Article  PubMed  CAS  Google Scholar 

  29. Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Wang XY, Gupta P, Emdad L, Lebedeva IV, Sauane M, Su ZZ, Rahmani M, Broaddus WC, Young HF, Lesniak MS, Grant S, Curiel DT, Fisher PB (2010) The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther 128(2):375–384

    Article  PubMed  CAS  Google Scholar 

  30. Su Z, Lebedeva IV, Gopalkrishnan RV, Goldstein NI, Stein CA, Reed JC, Dent P, Fisher PB (2001) A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci USA 98(18):10332–10337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81001007, 81270003, 31100639); the Program for Young Excellent Talents in Tongji University (2008KJ060); and Youth Fund of Shanghai 10th People’s Hospital (10RQ105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin He or Bin Xu.

Additional information

Bin He and Xiuyan Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, B., Huang, X., Liu, X. et al. Cancer targeting gene-viro-therapy for pancreatic cancer using oncolytic adenovirus ZD55-IL-24 in immune-competent mice. Mol Biol Rep 40, 5397–5405 (2013). https://doi.org/10.1007/s11033-013-2638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2638-8

Keywords

Navigation