Advertisement

Molecular Biology Reports

, Volume 40, Issue 7, pp 4317–4325 | Cite as

Direct amplification of new cellulase genes from woodland soil purified DNA

  • Marco Cucurachi
  • Matteo Busconi
  • Mariangela Marudelli
  • Giovanna Soffritti
  • Corrado Fogher
Article

Abstract

Eight genes encoding cellulolytic enzymes were obtained by direct PCR amplification of genomic DNA recovered from woodland soil samples. The direct amplifications were carried out by using primers designed from available online cellulase nucleotide sequences. The isolated genes were all different from each other and homologous to endo-β-1,4-glucanases of Bacillus subtilis. The cellulases were functionally expressed in Escherichia coli and tested on soluble substrate at 37 and 60 °C, showing different cellulolytic activities. Among these, the enzyme renamed CelWS6 exhibited good activity at higher temperatures. Further analysis of CelWS6 showed a high performance in acid environments (between pH 4.0 and 6.0) and at elevated temperatures with its maximum activity at pH 5.0 and 50 °C. At the optimum pH, it was very stable since more than 80 % of its original activity was maintained after an incubation of 120 min at 60 °C. Because the cellulases had different cellulolytic activities, but similar amino acid sequences, it was possible to assess the relationship between sequence and protein function.

Keywords

Cellulases Soil recovered DNA Bacillus subtilis Thermostability pH profile 

Notes

Acknowledgments

This work was supported by “Fondo per la promozione delle espressioni di interesse dei privati e azioni conseguenenti” instituted by Lombardia region (Italy) (Project number: 12771762).

Supplementary material

11033_2013_2519_MOESM1_ESM.pdf (310 kb)
Supplementary material 1 (PDF 310 kb)
11033_2013_2519_MOESM2_ESM.pdf (181 kb)
Supplementary material 2 (PDF 180 kb)
11033_2013_2519_MOESM3_ESM.pdf (361 kb)
Supplementary material 3 (PDF 360 kb)

References

  1. 1.
    Allgaier M, Reddy A, Park JI, Ivanova N, D’haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, VanderGheynst JS, Hugenholtz P (2010) Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One 5:e8812. doi: 10.1371/journal.pone.0008812 PubMedCrossRefGoogle Scholar
  2. 2.
    Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V (2013) Industrial waste based compost as a source of novel cellulolytic strains and enzymes. FEMS Microbiol Lett 339:93–101. doi: 10.1111/1574-6968.12057 PubMedCrossRefGoogle Scholar
  3. 3.
    Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  4. 4.
    Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Martins Dos Santos VAP, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010. doi: 10.1111/j.1462-2920.2005.00920 PubMedCrossRefGoogle Scholar
  5. 5.
    Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol 42:223–235Google Scholar
  6. 6.
    Guillen D, Sanchez S, Rodriguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85:1241–1249. doi: 10.1007/s00253-009-2331-y PubMedCrossRefGoogle Scholar
  7. 7.
    Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467. doi: 10.1126/science.1200387 PubMedCrossRefGoogle Scholar
  8. 8.
    Jung YJ, Lee YS, Park IH, Chandra MS, Kim KK, Choi YL (2010) Molecular cloning, purification and characterization of thermostable beta-1,3–1,4 glucanase from Bacillus subtilis A8–8. Indian J Biochem Biophys 47:203–210. doi: 10.1007/BF00633829 PubMedGoogle Scholar
  9. 9.
    Karlsson J, Saloheimo M, Siika-aho M, Tenkanen M, Penttilä M, Tjerneld F (2001) Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem 268:6498–6507. doi: 10.1046/j.0014-2956.2001.02605.x PubMedCrossRefGoogle Scholar
  10. 10.
    Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51. doi: 10.1111/j.1574-6968.2008.01097.x PubMedCrossRefGoogle Scholar
  11. 11.
    Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 2:10. doi: 10.1186/1754-6834-2-10 PubMedCrossRefGoogle Scholar
  12. 12.
    Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201. doi: 10.1007/s12033-008-9079-y PubMedCrossRefGoogle Scholar
  13. 13.
    Lin L, Meng X, Liu P, Hong Y, Wu G, Huang X, Li C, Dong J, Xiao L, Liu Z (2009) Improved catalytic efficiency of endo-beta-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl Microbiol Biotechnol 82:671–679. doi: 10.1007/s00253-008-1789-3 PubMedCrossRefGoogle Scholar
  14. 14.
    Liu J, Liu WD, Zhao XL, Shen WJ, Cao H, Cui ZL (2011) Cloning and functional characterization of a novel endo-beta-1,4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol 89:1083–1092. doi: 10.1007/s00253-010-2828-4 PubMedCrossRefGoogle Scholar
  15. 15.
    Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. doi: 10.1016/j.copbio.2005.08.009 PubMedCrossRefGoogle Scholar
  16. 16.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem 31:426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  17. 17.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  18. 18.
    Santos CR, Paiva JH, Sforça ML, Neves JL, Navarro RZ, Cota J, Akao PK, Hoffmam ZB, Meza AN, Smetana JH, Nogueira ML, Polikarpov I, Xavier-Neto J, Squina FM, Ward RJ, Ruller R, Zeri AC, Murakami MT (2012) Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem. J 441:95–104. doi: 10.1042/BJ20110869 PubMedCrossRefGoogle Scholar
  19. 19.
    Sizova MV, Izquierdo JA, Panikov NS, Lynd LR (2011) Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost. Appl Environ Microbiol 77:2282–2291. doi: 10.1128/AEM.01219-10 PubMedCrossRefGoogle Scholar
  20. 20.
    Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443. doi: 10.1038/nrg2336 PubMedCrossRefGoogle Scholar
  21. 21.
    Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780Google Scholar
  22. 22.
    Ting CL, Makarov DE, Wang ZG (2009) A kinetic model for the enzymatic action of cellulase. J. Phys. Chem. B 113:4970–4977. doi: 10.1021/jp810625k PubMedCrossRefGoogle Scholar
  23. 23.
    Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36. doi: 10.1016/j.jbiotec.2006.02.011 PubMedCrossRefGoogle Scholar
  24. 24.
    Yang D, Weng H, Wang M, Xu W, Li W, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol Biol Rep 37:1923–1929. doi: 10.1007/s11033-009-9635-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marco Cucurachi
    • 1
  • Matteo Busconi
    • 2
  • Mariangela Marudelli
    • 2
  • Giovanna Soffritti
    • 2
  • Corrado Fogher
    • 2
  1. 1.Plantechno s.r.lVicomoscanoItaly
  2. 2.Institute of Agronomy, Genetics, and Field CropsUniversità Cattolica del Sacro CuorePiacenzaItaly

Personalised recommendations