Molecular Biology Reports

, Volume 40, Issue 7, pp 4235–4240 | Cite as

Cloning and characterization of GPAT gene from Lepidium latifolium L.: a step towards translational research in agri-genomics for food and fuel

  • Sanjay Mohan Gupta
  • Pankaj Pandey
  • Atul Grover
  • Vikas Yadav Patade
  • Sadhana Singh
  • Zakwan Ahmed


Glycerol-3-phosphate acyltransferase (GPAT) catalyzes first and the rate limiting step in glycerolipid synthesis pathway, which in turn contribute to stabilization of plasma membrane structure and oil lipid synthesis in plant cells. Here, we report cloning and characterization of GPAT gene from Lepidium latifolium (LlaGPAT). The cDNA sequence (1,615 bp) of LlaGPAT gene consisted of 1,113 bp ORF encoding a protein of 370 aa residues, with deduced mass of 41.2 kDa and four acyltransferase (AT) motifs having role in catalysis and in glycerol-3-phosphate binding. Southern blot analysis suggested presence of a single copy of the gene in the genome. Tissue specific expression of the gene was seen more abundantly in aerial parts, compared to the roots. Quantitative real-time PCR indicated down-regulation of the gene by cold (4 °C), drought (PEG6000), salt (300 mM NaCl) and ABA (100 μM) treatments. Considering the vitality of the function of encoded enzyme, LlaGPAT can be considered a potential candidate gene for genetic engineering of oil yields and abiotic stress management in food as well as fuel crops.


Abiotic stress GPAT Triacylglycerols Acyltransferase Lepidium latifolium 



Glycerol-3-phosphate acyltransferase


Poly ethylene glycol


Rapid amplification of cDNA ends


Reverse transcription-PCR




Quantitative PCR



Defence Research and Development Organisation (DRDO), HQ, New Delhi is duly acknowledged for funding the project and providing Senior Research Fellowship (SRF) to PP and SS.

Supplementary material

11033_2013_2505_MOESM1_ESM.ppt (168 kb)
Supplementary material 1 (PPT 168 kb)


  1. 1.
    Wendel AA, Lewin TM, Coleman RA (2009) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791:501–506PubMedCrossRefGoogle Scholar
  2. 2.
    Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47:296–309PubMedCrossRefGoogle Scholar
  3. 3.
    Roy R, Ordovas L, Taourit S, Zaragoza P, Eggen A, Rodellar C (2006) Genomic structure and an alternative transcript of bovine mitochondrial glycerol-3-phosphate acyltransferase gene (GPAT). Cytogenet Genome Res 112:82–89PubMedCrossRefGoogle Scholar
  4. 4.
    Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277PubMedCrossRefGoogle Scholar
  5. 5.
    Liu JM, Chen SN, Yan B, Huang XQ, Yang MZ (1999) Cloning and sequencing of the cDNA (Accession No. AF090734) coding for glycerol-3-phosphate acyltransferase from Vicia faba. Plant Physiol 20:934Google Scholar
  6. 6.
    Weber S, Wolter FP, Buck F, Frentzen M, Heinz E (1991) Purification and cDNA sequencing of an oleate-selective acyl-ACO:sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol 17:1067–1076PubMedCrossRefGoogle Scholar
  7. 7.
    Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6215–6218CrossRefGoogle Scholar
  8. 8.
    Murata N, Tasaka Y (1997) Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta 1348:10–16PubMedCrossRefGoogle Scholar
  9. 9.
    Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007) Over-expression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097–1108PubMedCrossRefGoogle Scholar
  10. 10.
    Akbar E, Yakoob Z, Kamarudin SK, Ismail M, Salimon J (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res 91:162–163Google Scholar
  11. 11.
    Chen X, Snyder CL, Truksa M, Shah S, Weselake RJ (2011) sn-Glycerol-3-phosphate acyltransferases in plants. Plant Signal Behav 6:1695–1699PubMedCrossRefGoogle Scholar
  12. 12.
    Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011) Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol 155:851–865PubMedCrossRefGoogle Scholar
  13. 13.
    Tomokazu Y, Yukio K, Matsuo U (2008) Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation. Plant Cell Physiol 49:944–957CrossRefGoogle Scholar
  14. 14.
    Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568PubMedCrossRefGoogle Scholar
  15. 15.
    Yan K, Chen N, Qu YY, Dong XC, Meng QW, Zhao SJ, Yunnan ZY (2008) Over-expression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. J Int Plant Biol 50:613–621CrossRefGoogle Scholar
  16. 16.
    Gupta SM, Pandey P, Negi PS, Pande V, Grover A, Patade VY, Ahmed Z (2013) DRE-binding transcription factor gene (LlaDREB1b) is regulated by various abiotic stresses in Lepidium latifolium L. Mol Biol Rep 40:2573–2580CrossRefGoogle Scholar
  17. 17.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 11:4673–4680CrossRefGoogle Scholar
  18. 18.
    Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373PubMedCrossRefGoogle Scholar
  19. 19.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  20. 20.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  21. 21.
    Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation:version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  22. 22.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, New YorkGoogle Scholar
  23. 23.
    Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771PubMedCrossRefGoogle Scholar
  24. 24.
    Heath RJ, Rock CO (1998) A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol 180:1425–1430PubMedGoogle Scholar
  25. 25.
    Bhella RS, Mackenzie SL (1994) Nucleotide sequence of a cDNA from Carthamus tinctorius encoding a glycerol-3-phosphate acyltransferase. Plant Physiol 106:1713–1714PubMedCrossRefGoogle Scholar
  26. 26.
    Ishizaki O, Nishida I, Agata K, Eguchi G, Murata N (1988) Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett 238:424–430PubMedCrossRefGoogle Scholar
  27. 27.
    Tank D, Sang T (2001) Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae). Mol Phylogenet Evol 19:421–429PubMedCrossRefGoogle Scholar
  28. 28.
    Chen N, Guo SJ, Yan K, Dong XC, Meng QW (2005) Cloning and expression analysis of glycerol-3-phosphate acyltransferase gene from sweet pepper. Acta Horticulturae Sinica 32:823–827 (in Chinese)Google Scholar
  29. 29.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sanjay Mohan Gupta
    • 1
  • Pankaj Pandey
    • 1
  • Atul Grover
    • 1
  • Vikas Yadav Patade
    • 1
  • Sadhana Singh
    • 1
  • Zakwan Ahmed
    • 1
  1. 1.Molecular Biology and Genetic Engineering LaboratoryDefence Institute of Bio-Energy Research (DIBER)Haldwani, NainitalIndia

Personalised recommendations