Skip to main content
Log in

Expression patterns of As-ClC gene of Artemia sinica in early development and under salinity stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As-ClC (chloride channels protein from Artemia sinica), a member from the chloride channels protein family, is a α-helical membrane protein predicted to traverse the cell membrane 11 times. It is important for several physiological functions such as cell volume regulation, cell proliferation, growth and differentiation. In this paper, the complete cDNA sequence of As-CIC was cloned from A. sinica for the first time using RACE technology. The expression pattern and location of the As-CIC gene was investigated in different stages of the embryonic development by means of quantitative real-time PCR and in situ hybridization (ISH) assay. As-CLC was distributed throughout the whole body in cells of different embryonic development of A. sinica as shown by ISH. There was a low expression level of the As-ClC gene after 0 h and a higher expression level after 15 and 40 h when the embryo entered the next growth period and the environmental salinity changed. At adult stage, the As-ClC maintained a high expression level. The results of the real-time PCR assay showed an increasing trend of As-ClC transcripts with increasing salinity. The expression of As-ClC was higher in the control group (28) than in the experimental group except at a salinity of 200 PSU. It indicated that As-ClC functions as salinity-stress-related gene, probably participated in cell volume regulation and osmotic regulation during the early embryonic development of A. sinica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu XJ, Feng CZ, Dai ZM, Zhang RC, Yang WJ (2007) AMPK alpha subunit gene characterization in Artemia and expression during development and in response to stress. Stress 10:53–63

    Article  PubMed  CAS  Google Scholar 

  2. Dai JQ, Zhu XJ, Liu FQ, Xiang JH, Nagasawa H, Yang WJ (2008) Involvement of p90 ribosomal S6 kinase in termination of cell cycle arrest during development of Artemia-encysted embryos. J Biol Chem 283:1705–1712

    Article  PubMed  CAS  Google Scholar 

  3. Wang JQ, Hou L, Yi N, Zhang RF, Zou XY, Xiao Q, Guo R (2011) Molecular cloning and its expression of trachealess gene (As-trh) during development in brine shrimp, Artemia sinica. Mol Biol Rep 39(2):1659–1665. doi:10.1007/s11033-011-0905-0

    Article  PubMed  CAS  Google Scholar 

  4. Wang JQ, Hou L, Yi N, Zhang RF, Zou XY (2012) Molecular analysis and its expression of a pou homeobox protein gene during development and in response to salinity stress from brine shrimp, Artemia sinica. Comp Biochem Physiol A Physiol 161(1):36–43

    Article  CAS  Google Scholar 

  5. Cai Y (1989) A redescription of the brine shrimp (Artemia sinica). Wasmann J Biol 47:105–110

    Google Scholar 

  6. Bretag AH (1987) Muscle chloride channels. Physiol Rev 67:618–724

    PubMed  CAS  Google Scholar 

  7. Gogelein H (1988) Chloride channels in epithelia. Biochim Biophys Acta 947:521–547

    Article  PubMed  CAS  Google Scholar 

  8. Liedtke CM (1989) Regulation of chloride transport in epithelia. Annu Rev Physiol 51:143–160

    Article  PubMed  CAS  Google Scholar 

  9. Worrell RT, Butt AG, Cliff WH, Frizzell RA (1989) A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol 256:C1111–C1119

    PubMed  CAS  Google Scholar 

  10. Strange K, Denton J (2005) Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume. Physiology 21:61–68

    Article  Google Scholar 

  11. Miller C, White MM (1984) Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci USA 81:2772–2775

    Article  PubMed  CAS  Google Scholar 

  12. Faraldo-Gómez JD, Roux B (2004) Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli (clc-5). J Mol Biol 339:981–1000

    Article  PubMed  Google Scholar 

  13. Estévez R, Jentsch TJ (2002) CLC chloride channels: correlating structure with function. Curr Opin Struct Biol 12:531–539

    Article  PubMed  Google Scholar 

  14. Whiting PJ, Bonnert TP, McKernan RM, Farrar S, Bourdelles LB, Heavens RP, Smith DW, Hewson L, Rigby MR, Sirinathsinghji DJ, Thompson SA, Wafford KA (1999) Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann NY Acad Sci 868:645–653

    Article  PubMed  CAS  Google Scholar 

  15. Enz R (2001) GABA(C) receptors: a molecular view. Biol Chem 382:1111–1122

    Article  PubMed  CAS  Google Scholar 

  16. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  17. Bradbury NA (1999) Role of intracellular CFTR in acidification. Physiol Rev 79:S175–S191

    PubMed  CAS  Google Scholar 

  18. Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79:S23–S45

    PubMed  CAS  Google Scholar 

  19. Purdy MD, Wiener MC (2000) Expression, purification, and initial structural characterization of YadQ, a bacterial homolog of mammalian ClC chloride channel proteins. FEBS Lett 466:26–28

    Article  PubMed  CAS  Google Scholar 

  20. Estévez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ (2004) Functional and structural conservation of CBS domains from CLC chloride channels. J Physiol 557:363–378

    Article  PubMed  Google Scholar 

  21. Meyer S, Savaresi S, Forster IC, Dutzler R (2007) Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat Struct Mol Biol 14:60–67

    Article  PubMed  CAS  Google Scholar 

  22. Okada Y, Maeno E (2001) Apoptosis cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A Physiol 130:377–383

    Article  CAS  Google Scholar 

  23. Suzukia M, Moritaa T, Iwamotob T (2006) Diversity of Cl channels. Cell Mol Life Sci 63:12–24

    Article  Google Scholar 

  24. Hou L, Jiang LJ, Sun WJ, Zhang RF, Wang JQ, Zhao XT, An JL (2006) Establishment and improvement of real-time fluorescence quantitative PCR for actin gene of Artemia sinica. J Liaoning Normal Univ 29:15–19

    Google Scholar 

  25. Sun PS, Soderlund M, Venzon NC, Ye D, Lu Y (2007) Isolation and characterization of two actins of the Pacific white shrimp, Litopenaeus vannamei. Mar Biol 151:2145–2151

    Article  Google Scholar 

  26. Mindell JA, Maduke M (2001) ClC chloride channels. Genome Biol 2:3003.1–3003.6

    Article  Google Scholar 

  27. Sontheimer H (2003) Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci 26:543

    Article  PubMed  CAS  Google Scholar 

  28. Saviane C, Conti F, Pusch M (1999) The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol 113:457–468

    Article  PubMed  CAS  Google Scholar 

  29. Shan X, Dunbrack RL, Christopher SA, Kruger WD (2001) Mutations in the regulatory domain of cystathionine beta synthase can functionally suppress patient-derived mutations in cis. Hum Mol Genet 10:635–643

    Article  PubMed  CAS  Google Scholar 

  30. Bowne SJ, Sullivan LS, Blanton SH, Cepko CL, Blackshaw S, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Daiger SP (2002) Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 11:559–568

    Article  PubMed  CAS  Google Scholar 

  31. Bianchi L, Miller DM, George AL (2001) Expression of a ClC chloride channel in Caenorhabditis elegans gamma-aminobutyric acid-ergic neurons. Neurosci Lett 299:177–180

    Article  PubMed  CAS  Google Scholar 

  32. Bikfalvi A, Savona C, Perollet C, Javerzat S (1998) New insights in the biology of fibroblast growth factor-2. Angiogenesis 1:155–173

    Article  PubMed  Google Scholar 

  33. Adams TE, McKern NM, Ward CW (2004) Signalling by the type 1 insulin-like growth factor receptor: interplay with the epidermal growth factor receptor. Growth Factors 22:89–95

    Article  PubMed  CAS  Google Scholar 

  34. Tallquist M, Kazlauskas A (2004) PDGF signaling in cells and mice. Cytokine Growth Factor Rev 15:205–213

    Article  PubMed  CAS  Google Scholar 

  35. Valenzuela SM, Mazzanti M, Tonini R, Qiu MR, Warton K, Musgrove EA, Campbell TJ, Breit SN (2000) The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J Physiol 529:541–552

    Article  PubMed  CAS  Google Scholar 

  36. Shen MR, Droogmans G, Eggermont J, Voets T, Ellory JC, Nilius B (2000) Differential expression of volume—regulated anion channels during cell cycle progression of human cervical cancer cells. J Physiol 529:385–394

    Article  PubMed  CAS  Google Scholar 

  37. Nilius B (2001) Chloride channels go cell cycling. J Physiol 532:581

    Article  PubMed  CAS  Google Scholar 

  38. Wondergem R, Gong W, Monen SH, Dooley SN, Gonce JL, Conner TD, Houser M, Ecay TW, Ferslew KE (2001) Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J Physiol 532:661–672

    Article  PubMed  CAS  Google Scholar 

  39. Li M, Wang B, Lin W (2008) C-l channel blockers inhibit cell proliferation and arrest the cell cycle of hum an ovarian cancer cells. Eur J Gynaecol Oncol 29(3):267–271

    PubMed  Google Scholar 

  40. Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  PubMed  CAS  Google Scholar 

  41. Bachmann O, Heinzmann MA, Manns MP, Seidler U (2007) Mechanisms of secretion associated shrinkage and volume recovery in cultured rabbit parietal cells. Am J Physiol Gastrointest Liver Physiol 292:G711–G717

    Article  PubMed  CAS  Google Scholar 

  42. Zhang HN, Zhou JG, Qiu QY, Ren JL, Guan YY (2006) ClC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells. Apoptosis 11:327–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for valuable comments on an earlier version of the manuscript. This work was supported by the National Science Foundation of China (31071876 and 31272644).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Zou or Lin Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Hou, M., Li, Q. et al. Expression patterns of As-ClC gene of Artemia sinica in early development and under salinity stress. Mol Biol Rep 40, 3655–3664 (2013). https://doi.org/10.1007/s11033-012-2441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2441-y

Keywords

Navigation