Molecular Biology Reports

, Volume 40, Issue 5, pp 3475–3481 | Cite as

Knockout of the VPS22 component of the ESCRT-II complex in rice (Oryza sativa L.) causes chalky endosperm and early seedling lethality

  • Xiang-Qian Zhang
  • Pei Hou
  • Hai-Tao Zhu
  • Guo-Dong Li
  • Xin-Guo Liu
  • Xin-Ming Xie


In both yeast and mammals, the major constituent of the endosomal sorting complex required for transport-II (ESCRT-II) is the VPS22/EAP30 protein, which plays an important role in ubiquitin-mediated degradation of membrane proteins through the multivesicular body pathway. However, the functions of ESCRT-II subunits in plants are largely unknown. In this work, we report the genetic analysis and phenotypic characterization of mutants in OsVPS22 gene, which encodes a functional VPS22 homolog in rice. On the basis of a collection of T-DNA lines, we identified a T-DNA insertion mutant, which showed abnormal segregation ratios; we then found that the T-DNA insertion is located within the sixth intron of the OsVPS22 gene. Compared with the wild type, this vps22 mutant exhibited seedling lethality and severe reduction in shoot and root growth. In addition, the vps22 mutant had a chalky endosperm in the grain. In summary, our data suggest that OsVPS22 may be required for seedling viability and grain filling in rice, thus providing a valuable resource for further exploration of the functions of the ESCRTing machinery in plants.


Oryza sativaT-DNA insertion OsVPS22 Chalky endosperm Seedling lethality 



We are grateful to S. Hohmann and other anonymous reviewers for helpful suggestions, critical reading of the manuscript, and stimulating discussions. This work was supported by the National Natural Science Foundation of China (Nos. 30900884 and 31272491), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20094404120011), and the Natural Science Foundation of Guangdong province, China (No. 9451064201003804).


  1. 1.
    Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912PubMedCrossRefGoogle Scholar
  2. 2.
    Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155PubMedCrossRefGoogle Scholar
  3. 3.
    Otegui MS, Spitzer C (2008) Endosomal functions in plants. Traffic 9:1589–1598PubMedCrossRefGoogle Scholar
  4. 4.
    Schellmann S, Pimpl P (2009) Coats of endosomal protein sorting: retromer and ESCRT. Curr Opin Plant Biol 12:670–676PubMedCrossRefGoogle Scholar
  5. 5.
    Scheuring D, Viotti C, Krüger F, Künzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K (2011) Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis. Plant Cell 23:3463–3481PubMedCrossRefGoogle Scholar
  6. 6.
    Spitzer C, Schellmann S, Sabovljevic A, Shahriari M, Keshavaiah C, Bechtold N, Herzog M, Müller S, Hanisch F, Hülskamp M (2006) The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development 133:4679–4689PubMedCrossRefGoogle Scholar
  7. 7.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452PubMedCrossRefGoogle Scholar
  8. 8.
    Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14:666–673PubMedCrossRefGoogle Scholar
  9. 9.
    Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E (2011) The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. Plant Cell 23:3026–3040PubMedCrossRefGoogle Scholar
  10. 10.
    Shahriari M, Hülskamp M, Schellmann S (2010) Seeds of Arabidopsis plants expressing dominant-negative AtSKD1 under control of the GL2 promoter show a transparent testa phenotype and a mucilage defect. Plant Signal Behav 5:1308–1310PubMedCrossRefGoogle Scholar
  11. 11.
    Shahriari M, Keshavaiah C, Scheuring D, Sabovljevic A, Pimpl P, Häusler RE, Hülskamp M, Schellmann S (2010) The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana. Plant J 64:71–85PubMedGoogle Scholar
  12. 12.
    Winter V, Hauser M (2006) Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci 11:115–123PubMedCrossRefGoogle Scholar
  13. 13.
    Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Bio 3:893–905CrossRefGoogle Scholar
  14. 14.
    Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289PubMedCrossRefGoogle Scholar
  15. 15.
    Hierro A, Sun J, Rusnak AS, Kim J, Prag G, Emr SD, Hurley JH (2004) Structure of the ESCRT-II endosomal trafficking complex. Nature 431:221–225PubMedCrossRefGoogle Scholar
  16. 16.
    Teo H, Perisic O, González B, Williams RL (2004) ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev Cell 7:559–569PubMedCrossRefGoogle Scholar
  17. 17.
    Richardson LGL, Howard ASM, Khuu N, Gidda SK, McCartney A, Morphy BJ, Mullen RT (2011) Protein–protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. Front Plant Sci 2:20PubMedCrossRefGoogle Scholar
  18. 18.
    Shahriari M, Richter K, Keshavaiah C, Sabovljevic A, Huelskamp M, Schellmann S (2011) The Arabidopsis ESCRT protein–protein interaction network. Plant Mol Biol 76:85–96PubMedCrossRefGoogle Scholar
  19. 19.
    Ishimaru T, Horigane AK, Ida M, Iwasawa N, San-oh YA, Nakazono M, Nishizawa NK, Masumura T, Kondo M, Yoshida M (2009) Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. J Cereal Sci 50:166–174CrossRefGoogle Scholar
  20. 20.
    Kim SS, Lee SE, Kim OW, Kim DC (2000) Physicochemical characteristics of chalky kernels and their effects on sensory quality of cooked rice. Cereal Chem 77:376–379CrossRefGoogle Scholar
  21. 21.
    Nagato K, Ebata M (1965) Effects of high temperature during ripening period on the development and the quality of rice kernels. Proc Crop Sci Soc Jpn 34:59–65CrossRefGoogle Scholar
  22. 22.
    Tashiro T, Wardlaw IF (1991) The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res 42:485–496CrossRefGoogle Scholar
  23. 23.
    Jin TY, Li H, Guo T, Liu XL, Su N, Wu FQ, Wan JM (2010) Analysis of physiological and biochemical characteristics of six mutants with stable high percentage of chalkiness in rice grains. Acta Agron Sin 36:121–132CrossRefGoogle Scholar
  24. 24.
    Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681PubMedCrossRefGoogle Scholar
  25. 25.
    He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH (1999) Genetic analysis of rice grain quality. Theor Appl Genet 98:502–508CrossRefGoogle Scholar
  26. 26.
    Lisle AJ, Martin M, Fitzgerald MA (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem 77:627–632CrossRefGoogle Scholar
  27. 27.
    She KC, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naitoa N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22:3280–3294PubMedCrossRefGoogle Scholar
  28. 28.
    Kang H, Park S, Matsuoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901–911PubMedCrossRefGoogle Scholar
  29. 29.
    Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J, Jane J, Miyao A, Hirochika H, Nakamura Y (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023PubMedCrossRefGoogle Scholar
  30. 30.
    Ryoo N, Yu C, Park C, Baik M, Park IM, Cho M, Bhoo SH, An G, Hahn T, Jeon J (2007) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep 26:1083–1095PubMedCrossRefGoogle Scholar
  31. 31.
    Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374PubMedCrossRefGoogle Scholar
  32. 32.
    Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630PubMedCrossRefGoogle Scholar
  33. 33.
    Guo T, Liu XL, Wan XY, Weng JF, Liu SJ, Liu X, Chen MJ, Li JJ, Su N, Wu FQ, Cheng ZJ, Guo XP, Lei CL, Wang JL, Jiang L, Wan JM (2011) Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol 53:598–607PubMedCrossRefGoogle Scholar
  34. 34.
    Li ZF, Wan JM, Xia JF, Zhai HQ (2003) Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Acta Genet Sin 30:251–259PubMedGoogle Scholar
  35. 35.
    Li JM, Xiao JH, Grandillo S, Jiang LY, Wan YZ, Deng QY, Yuan LP, McCouch SR (2004) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47:697–704PubMedCrossRefGoogle Scholar
  36. 36.
    Liu JF, Kui LM, Zhu ZF, Tan LB, Wang GJ, Li QW, Shu JH, Sun CQ (2007) Identification of QTLs associated with processing quality and appearance quality of common wild rice (Oryza rufipogon Griff.). J Agric Biotechnol 15:90–96Google Scholar
  37. 37.
    Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101:823–829CrossRefGoogle Scholar
  38. 38.
    Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110:1334–1346PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou LJ, Chen LM, Jiang L, Zhang WW, Liu LL, Liu X, Zhao ZG, Liu SJ, Zhang LJ, Wang JK, Wan JM (2009) Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor Appl Genet 118:581–590PubMedCrossRefGoogle Scholar
  40. 40.
    Malerød L, Stuffers S, Brech A, Stenmark H (2007) Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic 8:1617–1629PubMedCrossRefGoogle Scholar
  41. 41.
    Shen B, Li C, Min Z, Meeley RB, Tarczynski MC, Olsen OA (2003) sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein. Proc Natl Acad Sci USA 100:6552–6557PubMedCrossRefGoogle Scholar
  42. 42.
    Wiśniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883PubMedCrossRefGoogle Scholar
  43. 43.
    Spitzer C, Reyes FC, Buono R, Sliwinski MK, Haas TJ, Otegui MS (2009) The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21:749–766PubMedCrossRefGoogle Scholar
  44. 44.
    Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168PubMedCrossRefGoogle Scholar
  45. 45.
    Budziszewski GJ, Lewis SP, Glover LW, Reineke J, Jones G, Ziemnik LS, Lonowski J, Nyfeler B, Aux G, Zhou Q, McElver J, Patton DA, Martienssen R, Grossniklaus U, Ma H, Law M, Levin JZ (2001) Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genetics 159:1765–1778PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Xiang-Qian Zhang
    • 1
  • Pei Hou
    • 2
  • Hai-Tao Zhu
    • 1
  • Guo-Dong Li
    • 1
  • Xin-Guo Liu
    • 1
  • Xin-Ming Xie
    • 1
  1. 1.College of Agriculture, South China Agricultural UniversityGuangzhouChina
  2. 2.MOE Key Laboratory of Bio-resources and Eco-environmentCollege of Life Sciences, Sichuan UniversityChengduChina

Personalised recommendations