Molecular Biology Reports

, Volume 40, Issue 4, pp 3181–3186 | Cite as

Pre-mir-27a rs895819 polymorphism and cancer risk: a meta-analysis

  • Shanliang Zhong
  • Zhiyuan Chen
  • Jinjin Xu
  • Wenjing Li
  • Jianhua Zhao


Aberrant expression of miRNAs plays critical roles in cancer development. Single nucleotide polymorphism (SNP) in miRNA precursors may affect miRNA expression levels. An important SNP in the pre-mir-27a with a A to G change (rs895819) was identified. Several original studies have explored the role of this SNP in cancer risk, but the results of these studies remain conflicting rather than conclusive. Therefore, we performed a meta-analysis of the published studies to derive a more precise estimation of the association between pre-mir-27a rs895819 polymorphism and cancer risk. In this meta-analysis, a total of 6 case–control studies (including 3,255 cases and 4,181 controls) were analyzed. The results of the overall meta-analysis did not suggest any associations between pre-mir-27a rs895819 polymorphism and cancer susceptibility. However, an decreased risk was observed in the subgroup of breast cancer patients (G vs A: OR = 0.90, 95 % CI = 0.83 ~ 0.97; P heterogeneity  = 0.75) or in the subgroup of Caucasian race (G vs A: OR = 0.90, 95 % CI = 0.83 ~ 0.97, P heterogeneity  = 0.78, I 2 = 0; AG vs AA: OR = 0.84, 95 % CI = 0.75 ~ 0.94, P heterogeneity  = 0.35, I 2 = 3.7 %; GG+AG vs AA: OR = 0.85, 95 % CI = 0.76 ~ 0.94, P heterogeneity  = 0.48, I 2 = 0). The findings suggest that pre-mir-27a rs895819 polymorphism may have some relation to breast cancer susceptibility or cancer development in Caucasian.


Cancer Meta-analysis Pre-mir-27a rs895819 Polymorphism Susceptibility miRNAs Pre-miRNA 



This study was supported by the National Natural Science Foundation of China (81272470).

Supplementary material

11033_2012_2392_MOESM1_ESM.xls (17 kb)
Supplementary material 1 (XLS 17 kb)


  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  2. 2.
    Lichtenstein P et al (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedCrossRefGoogle Scholar
  3. 3.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedCrossRefGoogle Scholar
  4. 4.
    Anglicheau D, Muthukumar T, Suthanthiran M (2010) MicroRNAs: small RNAs with big effects. Transplantation 90:105–112PubMedCrossRefGoogle Scholar
  5. 5.
    Kutanzi KR et al (2011) MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics 2:171–185PubMedCrossRefGoogle Scholar
  6. 6.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  7. 7.
    Yang R et al (2009) A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat 121:693–702PubMedCrossRefGoogle Scholar
  8. 8.
    Sun Q et al (2010) Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci 101:2241–2247PubMedCrossRefGoogle Scholar
  9. 9.
    Catucci I et al (2012) The SNP rs895819 in miR-27a is not associated with familial breast cancer risk in Italians. Breast Cancer Res Treat 133:805–807PubMedCrossRefGoogle Scholar
  10. 10.
    Hezova R et al (2012) Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer. World J Gastroenterol 18:2827–2831PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang M et al (2012) Associations of miRNA polymorphisms and female physiological characteristics with breast cancer risk in Chinese population. Eur J Cancer Care (Engl) 21:274–280CrossRefGoogle Scholar
  12. 12.
    Zhou Y et al (2012) Association analysis of genetic variants in microRNA networks and gastric cancer risk in a Chinese Han population. J Cancer Res Clin Oncol 138:939–945PubMedCrossRefGoogle Scholar
  13. 13.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748PubMedGoogle Scholar
  14. 14.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188PubMedCrossRefGoogle Scholar
  15. 15.
    Egger M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedCrossRefGoogle Scholar
  16. 16.
    Yang R, Burwinkel B (2012) A bias in genotyping the miR-27a rs895819 and rs11671784 variants. Breast Cancer Res Treat 134:899–901PubMedCrossRefGoogle Scholar
  17. 17.
    Mertens-Talcott SU et al (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67:11001–11011PubMedCrossRefGoogle Scholar
  18. 18.
    Li X et al (2010) MicroRNA-27a indirectly regulates estrogen receptor alpha expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology 151:2462–2473PubMedCrossRefGoogle Scholar
  19. 19.
    Chintharlapalli S et al (2011) Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer 11:371PubMedCrossRefGoogle Scholar
  20. 20.
    Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284:23204–23216PubMedCrossRefGoogle Scholar
  21. 21.
    Zhou L et al (2012) Mechanism and function of decreased FOXO1 in renal cell carcinoma. J Surg Oncol 105:841–847PubMedCrossRefGoogle Scholar
  22. 22.
    Ma Y et al (2010) miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett 298:150–158PubMedCrossRefGoogle Scholar
  23. 23.
    Lerner M et al (2011) MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle 10:2172–2183PubMedCrossRefGoogle Scholar
  24. 24.
    Spruck C (2011) miR-27a regulation of SCF(Fbw7) in cell division control and cancer. Cell Cycle 10:3232–3233PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Q et al (2011) Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene 30:3875–3886PubMedCrossRefGoogle Scholar
  26. 26.
    Fletcher CE et al (2012) Androgen-regulated processing of the oncomir MiR-27a, which targets prohibitin in prostate cancer. Hum Mol Genet 21:3112–3127PubMedCrossRefGoogle Scholar
  27. 27.
    Liu T et al (2009) MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 273:233–242PubMedCrossRefGoogle Scholar
  28. 28.
    Jazdzewski K et al (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105:7269–7274PubMedCrossRefGoogle Scholar
  29. 29.
    Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16:1124–1131PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Shanliang Zhong
    • 1
  • Zhiyuan Chen
    • 2
    • 3
  • Jinjin Xu
    • 1
  • Wenjing Li
    • 4
  • Jianhua Zhao
    • 1
  1. 1.Center of Clinical Laboratory ScienceJiangsu Cancer Hospital, the Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Department of General SurgeryJiangsu Cancer HospitalNanjingChina
  3. 3.Teaching and Research Office of General SurgeryXuzhou Medical CollegeXuzhouChina
  4. 4.Department of Clinical LaboratorySuzhou Municipal HospitalSuzhouChina

Personalised recommendations