Molecular Biology Reports

, Volume 40, Issue 4, pp 3093–3099 | Cite as

Effects of autocrine vascular endothelial growth factor (VEGF) in non-small cell lung cancer cell line A549

  • Ying Wang
  • Lu Huang
  • Yunmei Yang
  • Liqian Xu
  • Ji Yang
  • Yue Wu


It is reported that the autocrine loop of the vascular endothelial growth factor (VEGF) is crucial for the survival and proliferation of non-small cell lung cancer (NSCLC) tumors. In this study we aimed to systematically investigate the role of autocrine vascular VEGF in NSCLC cell line A549 through inhibition of endogenous VEGF. A549 cells were transfected with florescence-labeled VEGF oligodeoxynucleotide with lipofectamine. For the experimental group, cells were transfected with VEGF anti-sense oligodeoxynucleotide (ASODN), sense oligodeoxynucleotide (SODN) and mutant oligodeoxynuleotide (MODN) respectively. For the control group cells were mock transfected with lipofectamine or culture medium. At indicated time point after transfection, the expression levels of VEGF mRNA and protein in A549 cells were analyzed by RT-PCR and ELISA respectively. Cell viability was measured by the MTT assay. Cell cycle distribution was detected by flow cytometry. As revealed by RT-PCR assay, the mRNA level of VEGF in cells transfected with ASDON was significantly lower than the other four groups (P < 0.05) at 24 and 48 h after transfection. ELISA assay yielded similar result with significantly decreased level of VEGF protein expression (P < 0.05). The survival fraction of A549 cells transfected with ASDON was significantly lower than the other four groups (P < 0.05) at 24 h after transfection. Also the percentage of G2 phase cells of ASODN group was significantly lower than other four groups. Our data indicate that VEGF expression is efficiently inhibited in A549 cells by ASODN transfection and this inhibition leads to inhibited cell growth and impaired cell cycle distribution.


NSCLC VEGF ASODN Endogenous Autocrine 



This study was supported by Zhejiang Provincial Medical Technology Program of China (No. 2012KYB104).


  1. 1.
    Thompson E (2005) Latest advances and research in lung cancer. Drug News Perspect 18(6):405–411PubMedGoogle Scholar
  2. 2.
    Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, Spitznagel EL, Piccirillo J (2006) Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24(28):4539–4544. doi: 10.1200/jco.2005.04.4859 PubMedCrossRefGoogle Scholar
  3. 3.
    de Perrot M, Licker M, Robert J, Spiliopoulos A (1999) Time trend in the surgical management of patients with lung carcinoma. Eur J Cardiothorac Surg 15(4):433–437PubMedCrossRefGoogle Scholar
  4. 4.
    Brescia FJ, Fontenot MRG , Johnson DH (1997) Clinical practice guidelines for the treatment of unresectable non-small-cell lung cancer. Adopted on May 16, 1997 by the American Society of Clinical Oncology. J Clin Oncol 15 (8):2996–3018Google Scholar
  5. 5.
    Pfister DG, Johnson DH, Azzoli CG, Sause W, Smith TJ, Baker S Jr, Olak J, Stover D, Strawn JR, Turrisi AT (2004) American society of clinical oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol 22(2):330–353. doi: 10.1200/jco.2004.09.053 PubMedCrossRefGoogle Scholar
  6. 6.
    Han K, Cao W, Che J, Bo S, Guo X, Huang G, Ma L, Sun L, Gao C, Zhong B, Cao Z, Tucker SJ, Wang D (2009) First line chemotherapy with weekly docetaxel and cisplatin in elderly patients with advanced non-small cell lung cancer: a multicenter phase II study. J Thorac Oncol 4(4):512–517PubMedCrossRefGoogle Scholar
  7. 7.
    Juergens R, Brahmer J, Ettinger D (2007) Gemcitabine and vinorelbine in recurrent advanced non-small cell lung cancer: sequence does matter. Cancer Chemother Pharmacol 59(5):621–629. doi: 10.1007/s00280-006-0304-8 PubMedCrossRefGoogle Scholar
  8. 8.
    Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. New Eng J Med 346(2):92–98. doi: 10.1056/NEJMoa011954 PubMedCrossRefGoogle Scholar
  9. 9.
    Delbaldo C, Michiels S, Syz N, Soria J-C, Le Chevalier T, Pignon J-P (2004) Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer. J Am Med Assoc 292(4):470–484. doi: 10.1001/jama.292.4.470 CrossRefGoogle Scholar
  10. 10.
    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985PubMedCrossRefGoogle Scholar
  11. 11.
    Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9(4):777–794. doi: 10.1111/j.1582-4934.2005.tb00379.x PubMedCrossRefGoogle Scholar
  12. 12.
    Regina S, Rollin J, Blechet C, Iochmann S, Reverdiau P, Gruel Y (2008) Tissue factor expression in non-small cell lung cancer: relationship with vascular endothelial growth factor expression, microvascular density, and K-ras mutation. J Thorac Oncol 3(7):689–697. doi: 10.1097/JTO.0b013e31817c1b21 PubMedCrossRefGoogle Scholar
  13. 13.
    Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP Inhibition. Cell 102(1):33–42. doi: 10.1016/s0092-8674(00)00008-8 PubMedCrossRefGoogle Scholar
  14. 14.
    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. doi: 10.1210/er.2003-0027 PubMedCrossRefGoogle Scholar
  15. 15.
    Fontanini G, Vignati S, Boldrini L, Chinè S, Silvestri V, Lucchi M, Mussi A, Angeletti CA, Bevilacqua G (1997) Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma. Clin Cancer Res 3(6):861–865PubMedGoogle Scholar
  16. 16.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Eng J Med 350(23):2335–2342. doi: 10.1056/NEJMoa032691 PubMedCrossRefGoogle Scholar
  17. 17.
    Santos SCR, Dias S (2004) Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 103(10):3883–3889. doi: 10.1182/blood-2003-05-1634 PubMedCrossRefGoogle Scholar
  18. 18.
    Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75(1):280–284PubMedCrossRefGoogle Scholar
  19. 19.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  20. 20.
    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer I 82(1):4–7. doi: 10.1093/jnci/82.1.4 CrossRefGoogle Scholar
  21. 21.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Eng J Med 285(21):1182–1186. doi: 10.1056/NEJM197111182852108 PubMedCrossRefGoogle Scholar
  22. 22.
    Folkman J (1990) Endothelial cells and angiogenic growth factors in cancer growth and metastasis. Introduction. Cancer Metastasis Rev 9(3):171–174PubMedCrossRefGoogle Scholar
  23. 23.
    Takeda A, Stoeltzing O, Ahmad SA, Reinmuth N, Liu W, Parikh A, Fan F, Akagi M, Ellis LM (2002) Role of angiogenesis in the development and growth of liver metastasis. Ann Surg Oncol 9(7):610–616PubMedCrossRefGoogle Scholar
  24. 24.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027. doi: 10.1200/jco.2005.06.081 PubMedCrossRefGoogle Scholar
  25. 25.
    Kotteas EA, Charpidou AG, Syrigos KN (2010) Targeted therapy for non-small cell lung cancer: focusing on angiogenesis, the epidermal growth factor receptor and multi-kinase inhibitors. Anti-Cancer Drugs 21(2):151–168. doi: 110.1097/CAD.1090b1013e328334da328302 PubMedCrossRefGoogle Scholar
  26. 26.
    Pal SK, Figlin RA, Reckamp K (2010) Targeted therapies for non-small cell lung cancer: an evolving landscape. Mol Cancer Ther 9(7):1931–1944. doi: 10.1158/1535-7163.mct-10-0239 PubMedCrossRefGoogle Scholar
  27. 27.
    Feng Y, Hu J, Ma J, Feng K, Zhang X, Yang S, Wang W, Zhang J, Zhang Y (2011) RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur J Cancer 47(15):2353–2363PubMedCrossRefGoogle Scholar
  28. 28.
    Yang Y, Bai Y, Xie G, Zhang N, Ma YP, Chen LJ, Jiang Y, Zhao X, Wei YQ, Deng HX (2010) Efficient inhibition of non-small-cell lung cancer xenograft by systemic delivery of plasmid-encoding short-hairpin RNA targeting VEGF. Cancer Biother Radiopharm 25(1):65–73PubMedCrossRefGoogle Scholar
  29. 29.
    Galderisi U, Cascino A, Giordano A (1999) Antisense oligonucleotides as therapeutic agents. J Cell Physiol 181(2):251–257. doi: 10.1002/(sici)1097-4652(199911)181:2<251:aid-jcp7>;2-d PubMedCrossRefGoogle Scholar
  30. 30.
    Acosta R, Montañez C, Gómez P, Cisneros B (2002) Delivery of antisense oligonucleotides to PC12 cells. Neurosci Res 43(1):81–86. doi: 10.1016/s0168-0102(02)00014-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Bochot A, Couvreur P, Fattal E (2000) Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog Retin Eye Res 19(2):131–147. doi: 10.1016/s1350-9462(99)00014-2 PubMedCrossRefGoogle Scholar
  32. 32.
    Lebedeva I, Benimetskaya L, Stein CA, Vilenchik M (2000) Cellular delivery of antisense oligonucleotides. Eur J Pharm Biopharm 50(1):101–119PubMedCrossRefGoogle Scholar
  33. 33.
    Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK (1994) Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 8(2):171–176. doi: 10.1038/ng1094-171 PubMedCrossRefGoogle Scholar
  34. 34.
    Gerber H-P, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417(6892):954–958PubMedCrossRefGoogle Scholar
  35. 35.
    Katoh O, Takahashi T, Oguri T, Kuramoto K, Mihara K, Kobayashi M, Hirata S, Watanabe H (1998) Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res 58(23):5565–5569PubMedGoogle Scholar
  36. 36.
    Fragoso R, Pereira T, Wu Y, Zhu Z, Cabeçadas J, Dias S (2006) VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 107(4):1608–1616. doi: 10.1182/blood-2005-06-2530 PubMedCrossRefGoogle Scholar
  37. 37.
    Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M (1999) NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19(4):2690–2698PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ying Wang
    • 1
  • Lu Huang
    • 2
  • Yunmei Yang
    • 1
  • Liqian Xu
    • 1
  • Ji Yang
    • 1
  • Yue Wu
    • 1
  1. 1.Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Department of Orthopedics, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations