Molecular Biology Reports

, Volume 40, Issue 4, pp 2995–3002 | Cite as

Biochemical characterization of NADP+-dependent isocitrate dehydrogenase from Microcystis aeruginosa PCC7806

  • Ming-Ming Jin
  • Peng Wang
  • Xue Li
  • Xiao-Yu Zhao
  • Lei Xu
  • Ping Song
  • Guo-Ping Zhu


Microcystis aeruginosa is the key symptom of water eutrophication and produces persistent microcystins. Our special attention was paid to the isocitrate dehydrogenase (IDH) of M. aeruginosa (MaIDH) because it plays important roles in energy and biosynthesis metabolisms and its catalytic product 2-oxoglutarate provides the carbon skeleton for ammonium assimilation and also constitutes a signaling molecule of nitrogen starvation in cyanobacteria. Sequence alignment showed that MaIDH shared significant sequence identity with IDHs from other cyanobacteria (>80 %) and other bacteria (>45 %). The subunit molecular weight of MaIDH was determined to be 52.6 kDa by filtration chromatography, suggesting MaIDH is a typical homodimer. The purified recombinant MaIDH was completely NADP+-dependent and no NAD+-linked activity was detectable. The K m values for NADP+ were 32.24 and 71.71 μM with Mg2+ and Mn2+ as a sole divalent cation, and DL-isocitrate linked K m values were 32.56 μM (Mg2+) and 124.3 μM (Mn2+), respectively. As compared with Mn2+, MaIDH showed about 2.5-times and 4-times higher affinities (1/K m) to NADP+ and dl-isocitrate with Mg2+. The optimum activity of MaIDH was found at pH 7.5, and its optimum temperature was 45 °C (Mn2+) and 50 °C (Mg2+). Heat-inactivation studies showed that heat treatment for 20 min at 45 °C caused a 50 % loss of enzyme activity. MaIDH was completely divalent cation dependent as other typical dimeric IDHs and Mn2+ was its best activator. Our study is expected to give a better understanding of primary metabolic enzymes in M. aeruginosa. This would provide useful basic information for the research of controlling the blue-green algae blooms through biological techniques.


Microcystis aeruginosa Isocitrate dehydrogenase Biochemical properties Coenzyme specificity 



This research was supported by funds from the National High Technology Research and Development Program (“863” Program: 2012AA02A708), the National Natural Science Foundation of China (31170005; 30900243), Specialized Research Fund for the Doctoral Program of Higher Education of China (20113424110004), the Fund of State Key Laboratory of Genetics Resources and Evolution from Kunming Institute of Zoology (Chinese Academy of Sciences, CAS) (GREKF11-07), Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources and Program for Innovative Research Team in Anhui Normal University.


  1. 1.
    Zhu GP, Golding GB, Dean AM (2005) The selective cause of an ancient adaptation. Science 307(5713):1279–1282PubMedCrossRefGoogle Scholar
  2. 2.
    Ceccarelli C, Grodsky NB, Ariyaratne N, Colman RF, Bahnson BJ (2002) Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism. J Biol Chem 277(45):43454–43462PubMedCrossRefGoogle Scholar
  3. 3.
    Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E, Ding J (2004) Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 279(32):33946–33957PubMedCrossRefGoogle Scholar
  4. 4.
    Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, Song BJ, Huh TL (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276(19):16168–16176PubMedCrossRefGoogle Scholar
  5. 5.
    Kim SY, Park JW (2003) Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res 37(3):309–316PubMedCrossRefGoogle Scholar
  6. 6.
    Kim HJ, Kang BS, Park JW (2005) Cellular defense against heat shock-induced oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. Free Radic Res 39(4):441–448PubMedCrossRefGoogle Scholar
  7. 7.
    Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JM (2002) Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32(11):1185–1196PubMedCrossRefGoogle Scholar
  8. 8.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KM, Velculescu VE, Vogelsetein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(21):765–773PubMedCrossRefGoogle Scholar
  9. 9.
    Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, Dang L, Fantin VR, Mark TW (2009) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207(2):339–344CrossRefGoogle Scholar
  10. 10.
    Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C (2011) Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One 6(5):e19868PubMedCrossRefGoogle Scholar
  11. 11.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744PubMedCrossRefGoogle Scholar
  12. 12.
    Jacoby JM, Collier DC, Welch EB, Hardy FJ, Crayton M (2000) Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Can J Fish Aquat Sci 57(1):231–240CrossRefGoogle Scholar
  13. 13.
    Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K (2002) Effect of nitrogen and phosphorus on growth of toxic and nontoxic microcystis strains and on intracellular microcystin concentrations. Microb Ecol 43(4):443–454PubMedCrossRefGoogle Scholar
  14. 14.
    Ito E, Takai A, Kondo F, Masui H, Imanishi S, Harada K (2002) Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon 40(7):1017–1025PubMedCrossRefGoogle Scholar
  15. 15.
    Carmichael WW (1992) Cyanobacteria secondary metabolites-the cyanotoxins. J Appl Bacteriol 72(6):445–459PubMedCrossRefGoogle Scholar
  16. 16.
    Ni LX, Acharya K, Hao XY, Li SY (2012) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88(9):1051–1057PubMedCrossRefGoogle Scholar
  17. 17.
    Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Tot Environ 409(10):1739–1745CrossRefGoogle Scholar
  18. 18.
    Rhee JR, Dahms HU, Choi BS, Lee JS, Choi IY (2012) Identification and analysis of whole microcystin synthetase genes from two Korean strains of the cyanobacterium Microcystis aeruginosa. Genes Genom 34(4):435–439CrossRefGoogle Scholar
  19. 19.
    Pearce J, Leach CK, Carr NG (1969) The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J Gen Microbiol 55(3):371–378PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334(6062):1551–1553PubMedCrossRefGoogle Scholar
  21. 21.
    Kuniyoshi TM, Gonzalez A, Lopez-Gomollon S, Valladares A, Bes MT, Fillat MF, Peleato ML (2011) 2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. FEBS Lett 585(24):3921–3926PubMedCrossRefGoogle Scholar
  22. 22.
    Zhao MX, Jiang YL, He YX, Chen YF, Teng YB, Chen Y, Zhang CC, Zhou CZ (2010) Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc Natl Acad Sci USA 107(28):12487–12492PubMedCrossRefGoogle Scholar
  23. 23.
    Martin-Luna B, Hernandez JA, Bes MT, Fillat MF, Peleato ML (2006) Identification of a Ferric uptake regulator from Microcystis aeruginosa PCC7806. FEMS Microbio Lett 254(1):63–70CrossRefGoogle Scholar
  24. 24.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948PubMedCrossRefGoogle Scholar
  25. 25.
    Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15(4):305–308PubMedCrossRefGoogle Scholar
  26. 26.
    Kim TK, Lee P, Colman RF (2003) Critical role of Lys212 and Tyr140 in porcine NADP+-dependent isocitrate dehydrogenase. J Biol Chem 278(49):49323–49331PubMedCrossRefGoogle Scholar
  27. 27.
    Pardo MA, Llama MJ, Serra JL (1999) Purification, properties and enhanced expression under nitrongen stravation of the NADP+-isocitrate dehydrogenase from the cyanobacterium Phormidium laminosum. Biochim Biophys Acta 1431(1):87–96PubMedCrossRefGoogle Scholar
  28. 28.
    Muro-Pastor MI, Florencio FJ (1994) NADP+-isocitrate dehydrogenase from the cyanobacterium Anabaena sp. strain PCC 7120: purification and characterization of the enzyme and cloning, sequencing, and disruption of the icd gene. J Bacteriol 176(9):2718–2726PubMedGoogle Scholar
  29. 29.
    Friga GM, Farkas GL (1981) Isolation and properties of isocitrate dehydrogenase from Anacystis nidulans. Arch Microbiol 129(5):331–334PubMedCrossRefGoogle Scholar
  30. 30.
    Schrautemeier B, Böhme H (1985) A distinct ferredoxin for nitrogen fixation isolated from heterocysts of the cyanobacterium Anabaena variabilis. FEBS Lett 184(2):304–308CrossRefGoogle Scholar
  31. 31.
    Neuer N, Bothe H (1983) Anaplerotic reactions in Anabaena cylindrica. FEBS Lett 158(1):79–83CrossRefGoogle Scholar
  32. 32.
    Muro-Pastor MI, Florencio FJ (1992) Purification and properties of NADP+-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 203(1–2):99–105PubMedCrossRefGoogle Scholar
  33. 33.
    Singh SK, Miller SP, Dean A, Banaszak LJ, LaPorte DC (2002) Bacillus subtilis isocitrate dehydrogenase. A substrate analogue for Escherichia coli isocitrate dehydrogenase kinase/phosphatase. J Biol Chem 277(9):7567–7573PubMedCrossRefGoogle Scholar
  34. 34.
    Jennings GT, Minard KI, McAlister-Henn L (1997) Expression and mutagenesis of mammalian cytosolic NADP+-specific isocitrate dehydrogenase. Biochemistry 36(44):13743–13747PubMedCrossRefGoogle Scholar
  35. 35.
    Reeves HC, Daumy GO, Lin CC, Houston M (1972) NADP+-specific isocitrate dehydrogenase of Escherichia coli. Biochim Biophys Acta 258(1):27–39PubMedCrossRefGoogle Scholar
  36. 36.
    Kosten S, Huszar VLM, Bécares E, Costa LS, Van Donk E, Hansson LA, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, Meester LD, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18(1):118–126CrossRefGoogle Scholar
  37. 37.
    Pardo MA, Llama MJ, Serra JL (1998) Thermal stabilization by its ligands of NADP+-isocitrate dehydrogenase from the thermophilic cyanobacterium Phormidium laminosum. Biotech 15:229–234Google Scholar
  38. 38.
    Papen H, Neuer G, Refaian M, Bothe H (1983) The isocitrate dehydrogenase from cyanabacteria. Arch Microbiol 134(1):73–79PubMedCrossRefGoogle Scholar
  39. 39.
    Stoddard BL, Dean A, Koshland DE Jr (1993) Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5 Å resolution: a pseudo-michaelis ternary complex. Biochemistry 32(36):9310–9316PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Ming-Ming Jin
    • 1
  • Peng Wang
    • 1
  • Xue Li
    • 1
  • Xiao-Yu Zhao
    • 1
  • Lei Xu
    • 1
  • Ping Song
    • 1
  • Guo-Ping Zhu
    • 1
  1. 1.Key Laboratory of Molecular Evolution and Biodiversity and Institute of Molecular Biology and BiotechnologyCollege of Life Sciences, Anhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations