Advertisement

Molecular Biology Reports

, Volume 40, Issue 3, pp 2431–2438 | Cite as

Glutathione S-transferases gene polymorphisms and risk of male idiopathic infertility: a systematic review and meta-analysis

  • Xin Li
  • Jinhong Pan
  • Qigui Liu
  • Enqing Xiong
  • Zhiwen Chen
  • Zhansong Zhou
  • Yongping Su
  • Gensheng Lu
Article

Abstract

The Glutathione S-transferases (GSTs) polymorphisms have been implicated in susceptibility to male idiopathic infertility, but study results are still controversial. To investigate the genetic associations between GSTs polymorphisms and risk of male idiopathic infertility, a systematic review and meta-analysis were performed. Meta-analysis was performed by pooling odds ratio (OR) with its corresponding 95 % confidence interval (95 % CI) form studies in electronic databases up to March 16, 2012. Glutathione S-transferase M 1 (GSTM1) null genotype, Glutathione S-transferase T 1 (GSTT1) null genotype, and dual null genotype of GSTM1/GSTT1 were analyzed independently. 14 eligible studies with a total of 1,845 idiopathic infertility males and 1,729 controls were included. There were 13 studies on GSTM1 polymorphism, 10 ones on GSTT1 polymorphism and 5 ones on GSTM1-GSTT1 interaction analysis. Meta-analyses of total relevant studies showed GSTM1 null genotype was significantly associated with an increased risk of male idiopathic infertility (OR = 1.40, 95 % CI 1.07–1.84, P OR = 0.015). The GSTM1-GSTT1 interaction analysis showed dual null genotype of GSTM1/GSTT1 was also significantly associated with increased risk of male idiopathic infertility (OR = 1.85, 95 % CI 1.07–3.21, P OR = 0.028). Subgroup analyses by ethnicity showed the associations above were still statistically significant in Caucasians (For GSTM1, OR = 1.51, 95 % CI 1.11–2.05, P OR = 0.009; For GSTM1/GSTT1, OR = 2.10, 95 % CI 1.51–2.91, P OR < 0.001). This meta-analysis suggests GSTM1 null genotype contributes to increased risk of male idiopathic infertility in Caucasians, and males with dual null genotype of GSTM1/GSTT1 are particularly susceptible to developing idiopathic infertility.

Keywords

Male idiopathic infertility Glutathione S-transferases Polymorphisms Meta-analysis 

Notes

Acknowledgments

This study was supported by Natural Science Foundation Project of CQ CSTC (CSTC, 2010BB5170) and State Key Laboratory Open Project on Trauma, Burn and Combined Injury (SKLKF201007).

Supplementary material

11033_2012_2323_MOESM1_ESM.docx (19 kb)
Supplemental figure funnel plot for 13 studies investigating the association between GSTM1 null genotype and idiopathic infertility risk (The horizontal and vertical axis correspond to the OR and confidence limits. OR, odds ratio; SE, standard error) (DOCX 19 kb)

REFERENCES

  1. 1.
    de Kretser DM (1997) Male infertility. Lancet 349(9054):787–790PubMedCrossRefGoogle Scholar
  2. 2.
    O’Flynn O’Brien KL, Varghese AC, Agarwal A (2010) The genetic causes of male factor infertility: a review. Fertil Steril 93(1):1–12PubMedCrossRefGoogle Scholar
  3. 3.
    Krausz C (2011) Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab 25(2):271–285PubMedCrossRefGoogle Scholar
  4. 4.
    Singh K, Jaiswal D (2011) Human male infertility: a complex multifactorial phenotype. Reprod Sci 18(5):418–425PubMedCrossRefGoogle Scholar
  5. 5.
    Tremellen K (2008) Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update 14(3):243–258PubMedCrossRefGoogle Scholar
  6. 6.
    Rajender S, Avery K, Agarwal A (2011) Epigenetics, spermatogenesis and male infertility. Mutat Res 727(3):62–71PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC (2004) Antioxidant role of Glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 6(2):289–300PubMedCrossRefGoogle Scholar
  8. 8.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  9. 9.
    Hayes JD, Strange RC (2000) Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61(3):154–166PubMedCrossRefGoogle Scholar
  10. 10.
    Strange RC, Spiteri MA, Ramachandran S, Fryer AA (2001) Glutathione-S-transferase family of enzymes. Mutat Res 482(1–2):21–26PubMedGoogle Scholar
  11. 11.
    Turner TT, Lysiak JJ (2008) Oxidative stress: a common factor in testicular dysfunction. J Androl 29(5):488–498PubMedCrossRefGoogle Scholar
  12. 12.
    Jaiswal D, Sah R, Agrawal NK, Dwivedi US, Trivedi S et al (2012) Combined effect of GSTT1 and GSTM1 polymorphisms on human male infertility in north Indian population. Reprod Sci 19(3):312–316PubMedCrossRefGoogle Scholar
  13. 13.
    Dhillon VS, Shahid M, Husain SA (2007) Associations of MTHFR DNMT3b 4977 bp deletion in mtDNA and GSTM1 deletion, and aberrant CpG island hypermethylation of GSTM1 in non-obstructive infertility in Indian men. Mol Hum Reprod 13(4):213–222PubMedCrossRefGoogle Scholar
  14. 14.
    Safarinejad MR, Shafiei N, Safarinejad S (2010) The association of Glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet 55(9):565–570PubMedCrossRefGoogle Scholar
  15. 15.
    Finotti AC, Costa ESRC, Bordin BM, Silva CT, Moura KK (2009) Glutathione S-transferase M 1 and T 1 polymorphism in men with idiopathic infertility. Genet Mol Res 8(3):1093–1098PubMedCrossRefGoogle Scholar
  16. 16.
    Polonikov AV, Yarosh SL, Kokhtenko EV, Starodubova NI, Pakhomov SP et al (2010) The functional genotype of Glutathione S-transferase T 1 gene is strongly associated with increased risk of idiopathic infertility in Russian men. Fertil Steril 94(3):1144–1147PubMedCrossRefGoogle Scholar
  17. 17.
    Aydos SE, Taspinar M, Sunguroglu A, Aydos K (2009) Association of CYP1A1 and Glutathione S-transferase polymorphisms with male factor infertility. Fertil Steril 92(2):541–547PubMedCrossRefGoogle Scholar
  18. 18.
    Paracchini V, Garte S, Taioli E (2006) MTHFR C677T polymorphism, GSTM1 deletion and male infertility: a possible suggestion of a gene–gene interaction? Biomarkers 11(1):53–60PubMedCrossRefGoogle Scholar
  19. 19.
    Ichioka K, Nagahama K, Okubo K, Soda T, Ogawa O et al (2009) Genetic polymorphisms in Glutathione S-transferase T 1 affect the surgical outcome of varicocelectomies in infertile patients. Asian J Androl 11(3):333–341PubMedCrossRefGoogle Scholar
  20. 20.
    Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC (2007) Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with Glutathione S-transferase Mu-1 null genotype. Asian J Androl 9(1):108–115PubMedCrossRefGoogle Scholar
  21. 21.
    Hwang K, Walters RC, Lipshultz LI (2011) Contemporary concepts in the evaluation and management of male infertility. Nat Rev Urol 8(2):86–94PubMedCrossRefGoogle Scholar
  22. 22.
    Su MT, Lin SH, Chen YC (2011) Association of sex hormone receptor gene polymorphisms with recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril 96(6):1435–1444PubMedCrossRefGoogle Scholar
  23. 23.
    Der Simonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefGoogle Scholar
  24. 24.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMedGoogle Scholar
  25. 25.
    Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10(1):101–129CrossRefGoogle Scholar
  26. 26.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560PubMedCrossRefGoogle Scholar
  27. 27.
    Thompson SG, Higgins J (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21(11):1559–1573PubMedCrossRefGoogle Scholar
  28. 28.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634PubMedCrossRefGoogle Scholar
  29. 29.
    Pajarinen J, Savolainen V, Perola M, Penttila A, Karhunen PJ (1996) Glutathione S-transferase-M 1 ‘null’ genotype and alcohol-induced disorders of human spermatogenesis. Int J Androl 19(3):155–163PubMedCrossRefGoogle Scholar
  30. 30.
    Chen SS, Chang LS, Chen HW, Wei YH (2002) Polymorphisms of Glutathione S-transferase M 1 and male infertility in Taiwanese patients with varicocele. Hum Reprod 17(3):718–725PubMedCrossRefGoogle Scholar
  31. 31.
    Wu Q, Xing J, Xue W, Sun J, Wang X et al (2009) Influence of polymorphism of Glutathione S-transferase T 1 on Chinese infertile patients with varicocele. Fertil Steril 91(3):960–962PubMedCrossRefGoogle Scholar
  32. 32.
    Messaros BM, Rossano MG, Liu G, Diamond MP, Friderici K et al (2009) Negative effects of serum p, p′-DDE on sperm parameters and modification by genetic polymorphisms. Environ Res 109(4):457–464PubMedCrossRefGoogle Scholar
  33. 33.
    Onaran I, Aydemir B, Kiziler AR, Demiryurek T, Alici B (2007) Relationships between levels of estradiol and testosterone in seminal plasma and GSTM1 polymorphism in infertile men. Arch Androl 53(1):13–16PubMedCrossRefGoogle Scholar
  34. 34.
    Lee IW, Kuo PH, Su MT, Kuan LC, Hsu CC et al (2011) Quantitative trait analysis suggests polymorphisms of estrogen-related genes regulate human sperm concentrations and motility. Hum Reprod 26(6):1585–1596PubMedCrossRefGoogle Scholar
  35. 35.
    Wu QF, Xing JP, Sun JH, Xue W, Wang XY et al (2007) Genetic polymorphism of Glutathione S-transferase T 1 associated with idiopathic azoospermia and oligospermia. Zhonghua Nan Ke Xue 13(5):407–410PubMedGoogle Scholar
  36. 36.
    Salehi Z, Gholizadeh L, Vaziri H, Madani AH (2012) Analysis of GSTM1, GSTT1, and CYP1A1 in idiopathic male infertility. Reprod Sci 19(1):81–85PubMedCrossRefGoogle Scholar
  37. 37.
    Volk M, Jaklic H, Zorn B, Peterlin B (2011) Association between male infertility and genetic variability at the PON1/2 and GSTM1/T1 gene loci. Reprod Biomed Online 23(1):105–110PubMedCrossRefGoogle Scholar
  38. 38.
    Chen WC, Kang XX, Wei YS, Pan Y, Zhou YL et al (2010) The research on GSTT1 and GSTM1 gene polymorphisms of the patients with oligospermous infertility of Zhuang population in Guangxi area. Chinese J Immunol 26(5):425–427Google Scholar
  39. 39.
    Wu QF, Xing JP, Tang KF, Xue W, Liu M et al (2008) Genetic polymorphism of Glutathione S-transferase T 1 gene and susceptibility to idiopathic azoospermia or oligospermia in northwestern China. Asian J Androl 10(2):266–270PubMedCrossRefGoogle Scholar
  40. 40.
    Tirumala Vani G, Mukesh N, Siva Prasad B, Rama Devi P, Hema Prasad M et al (2010) Role of Glutathione S-transferase Mu-1 (GSTM1) polymorphism in oligospermic infertile males. Andrologia 42(4):213–217PubMedCrossRefGoogle Scholar
  41. 41.
    Attia J, Thakkinstian A, D’Este C (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 56(4):297–303PubMedCrossRefGoogle Scholar
  42. 42.
    Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295PubMedGoogle Scholar
  43. 43.
    Saleh RA, Agarwal A (2002) Oxidative stress and male infertility: from research bench to clinical practice. J Androl 23(6):737–752PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Xin Li
    • 1
  • Jinhong Pan
    • 1
  • Qigui Liu
    • 2
  • Enqing Xiong
    • 1
  • Zhiwen Chen
    • 1
  • Zhansong Zhou
    • 1
  • Yongping Su
    • 3
  • Gensheng Lu
    • 1
  1. 1.Urologic Institute of PLA, Southwest HospitalThird Military Medical UniversityChongqingChina
  2. 2.Department of UrologyKunming General Hospital of PLAKunmingChina
  3. 3.State Key Laboratory of Trauma, Burns and Combined InjuryThird Military Medical UniversityChongqingChina

Personalised recommendations