Molecular Biology Reports

, Volume 40, Issue 2, pp 2019–2034 | Cite as

Ubiquitin- and ubiquitin-like proteins-conjugating enzymes (E2s) in breast cancer

  • Ioannis A. Voutsadakis


Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.


Breast cancer Ubiquitin Ubiquitination Ubiquitin conjugating enzymes Ubiquitin-like proteins SUMO BRCA1 NF-κB 


  1. 1.
    Harbeck N, Salem M, Nitz U, Gluz O, Liedtke C (2010) Personalized treatment of early-stage breast cancer: present concepts and future directions. Cancer Treat Rev 36:584–594PubMedCrossRefGoogle Scholar
  2. 2.
    Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11:174–183PubMedCrossRefGoogle Scholar
  3. 3.
    Groettrup M, Pelzer C, Schmidtke G, Hofmann K (2008) Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 33:230–237PubMedCrossRefGoogle Scholar
  4. 4.
    Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537PubMedCrossRefGoogle Scholar
  5. 5.
    Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429PubMedCrossRefGoogle Scholar
  6. 6.
    Voutsadakis IA (2010) Ubiquitin, ubiquitination and the ubiquitin-proteasome system in cancer. Atlas Genet Cytogen Oncol Haematol http://AtlasGeneticsOncologyorg/Deep/UbiquitinCancerID20083.httml
  7. 7.
    Kirkin V, Dikic I (2011) Ubiquitin networks in cancer. Curr Opin Genet Dev 21:21–28PubMedCrossRefGoogle Scholar
  8. 8.
    Behrends C, Harper JW (2011) Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 18:520–528PubMedCrossRefGoogle Scholar
  9. 9.
    Michelle C, Vourc’h P, Mignon L, Andres CR (2009) What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol 68(616):628Google Scholar
  10. 10.
    Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA (2007) Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445:394–398PubMedCrossRefGoogle Scholar
  11. 11.
    Wenzel DM, Stoll KE, Klevit RE (2011) E2 s: structurally economical and functionally replete. Biochem J 433:31–42PubMedCrossRefGoogle Scholar
  12. 12.
    Eddins MJ, Pickart CM (2005) Ubiquitin-conjugating enzymes. In: Mayer J, Ciechanover A, Rechsteiner M (eds) Protein degradation, vol 1. Wiley-VCH Verlag, Weinheim, pp 102–134CrossRefGoogle Scholar
  13. 13.
    Van Wijk SJL, Timmers HTM (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24:981–993PubMedCrossRefGoogle Scholar
  14. 14.
    Li W, Ye Y (2008) Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406PubMedCrossRefGoogle Scholar
  15. 15.
    Tokgöz Z, Siepmann TJ, Streich F Jr, Kumar B, Klein JM, Haas AL (2012) E1–E2 interactions in ubiquitin and Nedd8 ligation pathways. J Biol Chem 287:311–321PubMedCrossRefGoogle Scholar
  16. 16.
    Hochstrasser M (2006) Lingering mysteries of ubiquitin-chain assembly. Cell 124:27–34PubMedCrossRefGoogle Scholar
  17. 17.
    Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539PubMedCrossRefGoogle Scholar
  18. 18.
    Huang DT, Kinnucan E, Wang G, Baudenon S, Howley PM, Huibregtse JM, Pavletich NP (1999) Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science 286:1321–1326PubMedCrossRefGoogle Scholar
  19. 19.
    Praefcke GJK, Hofmann K, Dohmen RJ (2012) SUMO playing tag with ubiquitin. Trends Biochem Sci 37:23–31PubMedCrossRefGoogle Scholar
  20. 20.
    Anderson DD, Eom JY, Stover PJ (2012) Competition between Sumoylation and Ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. J Biol Chem 287:4790–4799PubMedCrossRefGoogle Scholar
  21. 21.
    Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG (2008) SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 107:195–210PubMedCrossRefGoogle Scholar
  22. 22.
    Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir J-M, Corbo L (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocrine Rev 32:597–622CrossRefGoogle Scholar
  23. 23.
    Sentis S, Le Romancer M, Bianchin C, Rostan M-C, Corbo L (2006) Sumoylation of the estrogen receptor α hinge region regulates its transcriptional activity. Mol Endocrinol 19:2671–2684CrossRefGoogle Scholar
  24. 24.
    Li S, Yang C, Hong Y, Bi H, Zhao F, Liu Y, Ao X, Pang P, Xing X, Chang AK, Xiao L, Zhang Y, Wu H (2012) The transcriptional activity of co-activator AIB1 is regulated by the SUMO E3 ligase PIAS1. Biol Cell 104:1–10CrossRefGoogle Scholar
  25. 25.
    Turner N, Tutt A, Ashworth A (2004) Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer 4:1–6CrossRefGoogle Scholar
  26. 26.
    Foulkes WD (2010) Traffic control by BRCA1. New Engl J Med 362:755–756PubMedCrossRefGoogle Scholar
  27. 27.
    Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, Ng T, Solomon E (2009) The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462:886–890PubMedCrossRefGoogle Scholar
  28. 28.
    Kim H, Chen J, Yu X (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316:1202–1205PubMedCrossRefGoogle Scholar
  29. 29.
    Yan J, Yang X-P, Kim Y-S, Joo JH, Jetten AM (2007) RAP80 interacts with the SUMO-conjugating enzyme UBC9 and is a novel target for sumoylation. Biochem Biophys Res Commun 362:132–138PubMedCrossRefGoogle Scholar
  30. 30.
    Wang B (2012) BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci 2:6PubMedCrossRefGoogle Scholar
  31. 31.
    Xu J, Watkins T, Reddy A, Reddy ESP, Rao VN (2009) A novel mechanism whereby BRCA1/1a/1b fine tunes the dynamic complex interplay between SUMO-dependent/independent activities of Ubc9 on E2-induced ERα activation/repression and degradation in breast cancer cells. Int J Oncol 34:939–949PubMedGoogle Scholar
  32. 32.
    Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG, Tomita YA, Rosen EM (2010) BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α. Mol Endocrinol 24:76–90PubMedCrossRefGoogle Scholar
  33. 33.
    Qin Y, Xu J, Aysola K, Begum N, Reddy V, Chai Y, Grizzle WE, Partridge EE, Reddy ESP, Rao VN (2011) Ubc9 mediates nuclear localization and growth suppression of BRCA1 and BRCA1a proteins. J Cell Physiol 226:3355–3367PubMedCrossRefGoogle Scholar
  34. 34.
    Woeller CF, Anderson DD, Szebenyi DME, Stover PJ (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J Biol Chem 282:17623–17631PubMedCrossRefGoogle Scholar
  35. 35.
    Palczewska M, Casafont I, Ghimire K, Rojas AM, Valencia A, Lafarga M, Mellström B, Naranjo JR (2011) Sumoylation regulates nuclear localization of repressor DREAM. Biochim Biophys Acta 1813:1050–1058PubMedCrossRefGoogle Scholar
  36. 36.
    Deng H, Lin Y, Badin M, Vasilcanu D, Strömberg T, Jernberg-Wiklund H, Sehat B, Larsoon O (2011) Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. Biochem Biophys Res Commun 404:667–671PubMedCrossRefGoogle Scholar
  37. 37.
    Sehat B, Tofigh A, Lin Y, Trocmé E, Liljedahl U, Lagergren J, Larsson O (2010) SUMOylation mediates the nuclear translocation and signalling of the IGF-1 receptor. Sci Signal 3:ra10PubMedCrossRefGoogle Scholar
  38. 38.
    Park MA, Seok Y-J, Jeong G, Lee J-S (2008) SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy. Nucleic Acids Res 36:263–283PubMedCrossRefGoogle Scholar
  39. 39.
    Chauhan D, Bianchi G, Anderson KC (2008) Targeting the UPS as therapy in multiple myeloma. BMC Biochem 9(Suppl 1):S1PubMedCrossRefGoogle Scholar
  40. 40.
    Liu Q, Li J, Khoury J, Colgan SP, Ibla JC (2009) Adenosine signalling mediates SUMO-1 modification of IκBα during hypoxia and reoxygenation. J Biol Chem 284:13686–13695PubMedCrossRefGoogle Scholar
  41. 41.
    Shifera AS (2010) Protein-protein interactions involving IKKγ (NEMO) that promote the activation of NF-Κb. J Cell Physiol 223:558–561PubMedGoogle Scholar
  42. 42.
    Zhou Y, Eppenberger-Castori S, Eppenberger U, Benz CC (2005) The NF-κB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer 12:S37–S46PubMedCrossRefGoogle Scholar
  43. 43.
    Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C, Suarez M, Febregat X, Campo E, Gascon P, Serrano S, Fernandez PL, Rovira A, Albanell J (2006) Activation of nuclear factor-κ B is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer 13:607–616PubMedCrossRefGoogle Scholar
  44. 44.
    Buchholz TA, Garg AK, Chakravarti N, Aggarwal BB, Esteva FJ, Kuerer HM, Singletary SE, Hortobagyi GN, Pusztai L, Cristofanilli M, Sahin AA (2005) The nuclear transcription factor κB/bcl-2 pathway correlates with pathologic complete response to doxorubicin-based neoadjuvant chemotherapy in human breast cancer. Clin Cancer Res 11:8398–8402PubMedCrossRefGoogle Scholar
  45. 45.
    Jones RL, Rojo F, A’Hern R, Villena N, Salter J, Corominas JM, Servitja S, Smith IE, Rovira A, Reis-Filho JS, Dowsett M, Albanell J (2011) Nuclear NF-κB/p65 expression and response to neoadjuvant chemotherapy in breast cancer. J Clin Pathol 64:130–135PubMedCrossRefGoogle Scholar
  46. 46.
    Perkins ND (2012) The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer 12:121–132PubMedGoogle Scholar
  47. 47.
    Shostak K, Chariot A (2011) NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Res 13:214PubMedCrossRefGoogle Scholar
  48. 48.
    Yu F, Deng H, Yao H, Liu Q, Su F, Song E (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29:4194–4204PubMedCrossRefGoogle Scholar
  49. 49.
    Zhu S, Sachdeva M, Wu F, Lu Z, Mo Y-Y (2010) Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 29:1763–1772PubMedCrossRefGoogle Scholar
  50. 50.
    Guo Y, Yang M-CW, Weissler JC, Yang Y-S (2008) Modulation of PLAGL2 transactivation activity by Ubc9 co-activation not SUMOylation. Biochem Biophys Res Commun 374:570–575PubMedCrossRefGoogle Scholar
  51. 51.
    Chen S-F, Gong C, Luo M, Yao H-R, Zeng Y-J, Su F-X (2011) Ubc9 expression predicts chemoresistance in breast cancer. Chin J Cancer 30:638–644PubMedCrossRefGoogle Scholar
  52. 52.
    Bremm A, Komander D (2011) Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends Biochem Sci 36:355–363PubMedGoogle Scholar
  53. 53.
    Castro A, Vigneron S, Lorca T, Labbé J-C (2003) La mitose sous surveillance. Med Sci 19:309–317Google Scholar
  54. 54.
    Matyskiela ME, Morgan DO (2009) Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol Cell 34:68–80PubMedCrossRefGoogle Scholar
  55. 55.
    Song L, Rape M (2011) Substrate-specific regulation of ubiquitination by the anaphase-promoting complex. Cell Cycle 10:52–56PubMedCrossRefGoogle Scholar
  56. 56.
    Wickliffe KE, Williamson A, Meyer H-J, Kelly A, Rape M (2011) K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21:656–663PubMedCrossRefGoogle Scholar
  57. 57.
    Mocciaro A, Rape M (2012) Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J Cell Sci 125:255–263PubMedCrossRefGoogle Scholar
  58. 58.
    Okamoto Y, Ozaki T, Miyazaki K, Aoyama M, Miyazaki M, Nakagawara A (2003) UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res 63:4167–4173PubMedGoogle Scholar
  59. 59.
    van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM (2010) Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol 188:83–100PubMedCrossRefGoogle Scholar
  60. 60.
    Wagner KW, Sapinoso LM, El-Rifai W, Frierson HF Jr, Butz N, Mestan J, Hofmann F, Deveraux QL, Hampton GM (2004) Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene 23:6621–6629PubMedCrossRefGoogle Scholar
  61. 61.
    Fujita T, Ikeda H, Kawasaki K, Taira N, Ogasawara Y, Nakagawara A, Doihara H (2009) Clinicopathological relevance of UbcH10 in breast cancer. Cancer Sci 100:238–248PubMedCrossRefGoogle Scholar
  62. 62.
    Berlingieri MT, Pallante P, Sboner A, Barbareschi M, Bianco M, Ferraro A, Mansueto G, Borbone E, Guerriero E, Troncone G, Fusco A (2007) UbcH10 is overexpressed in malignant breast carcinomas. Eur J Cancer 43:2729–2735PubMedCrossRefGoogle Scholar
  63. 63.
    Psyrri A, Kalogeras KT, Kronenwett R, Wirtz RM, Batistatou A, Bournakis E, Timotheadou E, Gogas H, Aravantinos G, Christodoulou C, Makatsoris T, Linardou H, Pectasides D, Pavlidis N, Economopoulos T, Foutzilas G (2012) Prognostic significance of UBE2C mRNA expression in high-risk early breast cancer. A Hellenic Cooperative Oncology Group (HeCOG) study. Ann Oncol 23:1422–1427PubMedCrossRefGoogle Scholar
  64. 64.
    Loussouarn D, Campion L, Leclair F, Campone M, Charbonnel C, Ricolleau G, Gouraud W, Bataille R, Jezéquel P (2009) Validation of UBE2C protein as a prognostic marker in node-positive breast cancer. Br J Cancer 101:166–173PubMedCrossRefGoogle Scholar
  65. 65.
    Tedesco D, Zhang J, Trinh L, Lalehzadeh G, Meisner R, Yamaguchi KD, Ruderman DL, Dinter H, Zajchowski DA (2007) The ubiquitin-conjugating enzyme E2-EPF is overexpressed in primary breast cancer and modulates sensitivity to topoisomerase II inhibition. Neoplasia 9:601–613PubMedCrossRefGoogle Scholar
  66. 66.
    Wu-Baer F, Lagrazon K, Yuan W, Baer R (2003) The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 278:34743–34746PubMedCrossRefGoogle Scholar
  67. 67.
    Polanowska J, Martin JS, Garcia-Muse T, Petalcorin MIR, Boulton SJ (2006) A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J 25:2178–2188PubMedCrossRefGoogle Scholar
  68. 68.
    Mittal MK, Singh K, Misra S, Chaudhuri G (2011) SLUG-induced elevation of D1 cyclin in breast cancer cells through the inhibition of its ubiquitination. J Biol Chem 286:469–479PubMedCrossRefGoogle Scholar
  69. 69.
    Wang C, Fan S, Li Z, Fu M, Rao M, Ma Y, Lisanti MP, Albanese C, Katzenellenbogen BS, Kushner PJ, Weber B, Rosen EM, Pestell RG (2005) Cyclin D1 antagonizes BRCA1 repression of estrogen receptor α activity. Cancer Res 65:6557–6567PubMedCrossRefGoogle Scholar
  70. 70.
    Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65:5599–5606PubMedCrossRefGoogle Scholar
  71. 71.
    Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon J-C, Woods YL, Lane DP (2004) Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279:42169–42181PubMedCrossRefGoogle Scholar
  72. 72.
    Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A (1999) Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IκBα. J Biol Chem 274:14823–14830PubMedCrossRefGoogle Scholar
  73. 73.
    Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467PubMedCrossRefGoogle Scholar
  74. 74.
    Lyakhovich A, Shekhar MPV (2004) RAD6B overexpression confers chemoresistance: RAD6 expression during cell cycle and its redistribution to chromatin during DNA damage-induced response. Oncogene 23:3097–3106PubMedCrossRefGoogle Scholar
  75. 75.
    Shekhar MPV, Gerard B, Pauley RJ, Williams BO, Tait L (2008) Rad6B is a positive regulator of β-catenin stabilization. Cancer Res 68:1741–1750PubMedCrossRefGoogle Scholar
  76. 76.
    Voutsadakis IA (2012) The ubiquitin–proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J Biomed Sci 19:67PubMedCrossRefGoogle Scholar
  77. 77.
    Shekhar MPV, Tait L, Gerard B (2006) Essential role of T-cell factor/β-catenin in regulation of Rad6B: a potential mechanism for Rad6B overexpression in breast cancer cells. Mol Cancer Res 4:729–745PubMedCrossRefGoogle Scholar
  78. 78.
    Gerard B, Tait L, Nangia-Makker P, Shekhar MPV (2011) Rad6B acts downstream of Wnt signaling to stabilize β-catenin: implications for a novel Wnt/β-catenin target. J Mol Signal 6:6PubMedCrossRefGoogle Scholar
  79. 79.
    Chen S, Wang D-L, Liu Y, Zhao L, Sun F-L (2012) RAD6 regulates the dosage of p53 by a combination of transcriptional and posttranscriptional mechanisms. Mol Cell Biol 32:576–587PubMedCrossRefGoogle Scholar
  80. 80.
    Kumar B, LeCompte KG, Klein JM, Haas AL (2010) Ser120 of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3α/Ubr1. J Biol Chem 285:41300–41309PubMedCrossRefGoogle Scholar
  81. 81.
    Perry ME (2010) The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol 2:a000968PubMedCrossRefGoogle Scholar
  82. 82.
    Shekhar MPV, Biernat LA, Pernick N, Tait L, Abrams J, Visscher DW (2010) Utility of DNA postreplication repair protein Rad6B in neoadjuvant chemotherapy response. Med Oncol 27:466–473PubMedCrossRefGoogle Scholar
  83. 83.
    Waite KA, Eng C (2003) BMP2 exposure results in decreased PTEN protein degradation and increased PTEN levels. Hum Mol Genet 12:679–684PubMedCrossRefGoogle Scholar
  84. 84.
    Verma S, Ismail A, Gao X, Fu G, Li X, O’Malley BW, Nawaz Z (2004) The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol Cell Biol 24:8716–8726PubMedCrossRefGoogle Scholar
  85. 85.
    Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D III, Fukuda M, Ohta T, Klevit R (2003) Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci USA 100:5646–5651PubMedCrossRefGoogle Scholar
  86. 86.
    Whitcomb EA, Taylor A (2009) Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7. Cell Div 4:17PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang D, Zhang D-E (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interf Cytok Res 31:119–130CrossRefGoogle Scholar
  88. 88.
    Desai SD, Haas AL, Wood LM, Tsai Y-C, Pestka S, Rubin EH, Saleem A, Nur-E-Kamal A, Liu LF (2006) Elevated expression of ISG 15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 66:921–928PubMedCrossRefGoogle Scholar
  89. 89.
    Bektas N, Noetzel E, Veeck J, Press MF, Kristiansen G, Naami A, Hartmann A, Dimmler A, Beckmann MW, Knüchel R, Fasching PA, Dahl E (2008) The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer. Breast Cancer Res 10:R58PubMedCrossRefGoogle Scholar
  90. 90.
    Desai SD, Reed RE, Burks J, Wood LM, Pullikuth AK, Haas AL, Liu LF, Breslin JW, Meiners S, Sankar S (2012) ISG15 disrupts cytoskeletal architecture and promotes motility in human breast cancer cells. Exp Biol Med 237:38–49CrossRefGoogle Scholar
  91. 91.
    Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE (2003) High-throughput immunoblotting. Ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278:16608–16613PubMedCrossRefGoogle Scholar
  92. 92.
    Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE (2003) Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 17:455–460PubMedCrossRefGoogle Scholar
  93. 93.
    Desai SD, Wood LM, Tsai Y-C, Hsieh T-S, Marks JR, Scott GL, Giovanella BC, Liu LF (2008) ISG15 as a novel tumor biomarker for drug sensitivity. Mol Cancer Ther 7:1430–1439PubMedCrossRefGoogle Scholar
  94. 94.
    Tripathi MK, Chaudhuri G (2005) Down-regulation of UCRP and UBE2L6 in BRCA2 knocked-down human breast cells. Biochem Biophys Res Commun 328:43–48PubMedCrossRefGoogle Scholar
  95. 95.
    Lopergolo A, Pennati M, Gandellini P, Orlotti NI, Poma P, Daidone MG, Folini M, Zaffaroni N (2009) Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilization and caspase-3 activation. Br J Cancer 100:739–746PubMedCrossRefGoogle Scholar
  96. 96.
    Ren J, Shi M, Liu R, Yang Q-H, Johnson T, Skarnes WC, Du C (2005) The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc Natl Acad Sci USA 102:565–570PubMedCrossRefGoogle Scholar
  97. 97.
    Hao Y, Sekine K, Kawabata A, Nakamura H, Ishioka T, Ohata H, Katayama R, Hashimoto C, Zhang X, Noda T, Tsuruo T, Naito M (2004) Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol 6:849–860PubMedCrossRefGoogle Scholar
  98. 98.
    Pohl C, Jentsch S (2008) Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132:832–845PubMedCrossRefGoogle Scholar
  99. 99.
    Ueki T, Park J-H, Nishidate T, Kijima K, Hirata K, Nakamura Y, Katagiri T (2009) Ubiquitination and downregulatio of BRCA1 by ubiquitin conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res 69:8752–8760PubMedCrossRefGoogle Scholar
  100. 100.
    Kawakami T, Chiba T, Suzuki T, Iwai K, Yamanaka K, Minato N, Suzuki H, Shimbara N, Hidaka Y, Osaka F, Omata M, Tanaka K (2001) NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J 20:4003–4012PubMedCrossRefGoogle Scholar
  101. 101.
    Fan M, Bigsby RM, Nephew KP (2003) The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-α and essential for the antiproliferative activity of ICI 182,780 in ERα-positive breast cancer cells. Mol Endocrinol 17:356–365PubMedCrossRefGoogle Scholar
  102. 102.
    Nikseresht M, Seghatoleslam A, Monabati A, Talei A, Ghalati FB, Owji AA (2010) Overexpression of the novel human gene, UBE2Q2, in breast cancer. Cancer Genet Cytogenet 197:101–106PubMedCrossRefGoogle Scholar
  103. 103.
    Seghatoleslam A, Nikseresht M, Shafiee SM, Monabati A, Namavari M, Talei A, Safaei A, Owji AA (2012) Expression of the novel human gene, UBE2Q1, in breast tumors. Mol Biol Rep 39:5135–5141PubMedCrossRefGoogle Scholar
  104. 104.
    Seghatoleslam A, Zambrano A, Million R, Ganguli G, Argentini M, Cromer A, Abecassis J, Wasylyk B (2006) Analysis of a novel human gene, LOC92912, over-expressed in hypopharyngeal tumours. Biochem Biophys Res Commun 339:422–429PubMedCrossRefGoogle Scholar
  105. 105.
    Hosey AM, Gorski JJ, Murray MM, Quinn JE, Chung WY, Stewart GE, James CR, Farragher SM, Mulligan JM, Scott AN, Dervan PA, Johnston PG, Couch FJ, Daly PA, Kay E, McCann A, Mullan PB, Harkin DP (2007) Molecular basis for estrogen receptor α deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst 99:1683–1694PubMedCrossRefGoogle Scholar
  106. 106.
    Gorski JJ, James CR, Quinn JE, Stewart GE, Crosbie Staunton K, Buckley NE, McDyer FA, Kennedy RD, Wilson RH, Mullan PB, Harkin DP (2010) BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Res Treat 122:721–731PubMedCrossRefGoogle Scholar
  107. 107.
    Bonéy-Montoya J, Ziegler YS, Curtis CD, Montoya JA, Nardulli AM (2010) Long-range transcriptional control of progesterone receptor gene expression. Mol Endocrinol 24:346–358PubMedCrossRefGoogle Scholar
  108. 108.
    Katiyar P, Ma Y, Riegel A, Fan S, Rosen EM (2009) Mechanism of BRCA1-mediated inhibition of progesterone receptor transcriptional activity. Mol Endocrinol 23:1135–1146PubMedCrossRefGoogle Scholar
  109. 109.
    Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, Hanada R, Joshi PA, Aliprantis A, Glimcher L, Pasparakis M, Khokha R, Ormandy CJ, Widschwendter M, Schett G, Penninger JM (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468:98–102PubMedCrossRefGoogle Scholar
  110. 110.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107PubMedCrossRefGoogle Scholar
  111. 111.
    Al Saleh S, Al Mulla F, Luqmani YA (2011) Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS ONE 6:e20610PubMedCrossRefGoogle Scholar
  112. 112.
    Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D, Sonenshein GE (2007) Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9:470–478PubMedCrossRefGoogle Scholar
  113. 113.
    Martins FC, De S, Almendro V, Gönen M, Park SY, Blum JL, Herlihy W, Ethington G, Schnitt SJ, Tung N, Garber JE, Fetten K, Michor F, Polyak K (2012) Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discov 2:503–511PubMedCrossRefGoogle Scholar
  114. 114.
    Wickenden JA, Watson CJ (2010) Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Res 12:202PubMedCrossRefGoogle Scholar
  115. 115.
    Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY, Stanculescu A (2009) Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 89:8918–8925CrossRefGoogle Scholar
  116. 116.
    Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115PubMedCrossRefGoogle Scholar
  117. 117.
    Milano A, Perri F, Caponigro F (2009) The ubiquitin-proteasome system as a molecular target in solid tumors: an update on bortezomib. OncoTargets Ther 2:171–178Google Scholar
  118. 118.
    Cao B, Mao X (2011) The ubiquitin-proteasomal system is critical for multiple myeloma: implications in drug discovery. Am J Blood Res 1:46–56PubMedGoogle Scholar
  119. 119.
    Powers GL, Ellison-Zelski SJ, Casa AJ, Lee AV, Alarid ET (2010) Proteasome inhibition represses ERα gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene 29:1509–1518PubMedCrossRefGoogle Scholar
  120. 120.
    Wang M, Medeiros BC, Erba HP, DeAngelo DJ, Giles FJ, Swords RT (2011) Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer. Expert Opin Ther Targets 15:253–264PubMedCrossRefGoogle Scholar
  121. 121.
    Liu G, Xirodimas DP (2010) NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways. Oncogene 29:2252–2261PubMedCrossRefGoogle Scholar
  122. 122.
    Broemer M, Tenev T, Rigbolt KTG, Hempel S, Blagoev B, Silke J, Ditzel M, Meier P (2010) Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell 40:810–822PubMedCrossRefGoogle Scholar
  123. 123.
    Dickens MP, Fitzgerald R, Fischer PM (2010) Small-molecule inhibitors of MDM2 as a new anticancer therapeutics. Semin Cancer Biol 20:10–18PubMedCrossRefGoogle Scholar
  124. 124.
    Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou Y-C, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145:1075–1087PubMedCrossRefGoogle Scholar
  125. 125.
    Shiratori T, Shimada H, Kagaya A, Kuboshima M, Nabeya Y, Machida T, Goto K, Takiguchi M, Ochiai T, Hiwasa T (2007) Sensitization against anticancer drugs by transfection with UBE2I variant gene into ras-NIH3H3 mouse fibroblasts. Anticancer Res 27:3227–3234PubMedGoogle Scholar
  126. 126.
    Zhao M, Vuori K (2011) The docking protein p130Cas regulates cell sensitivity to proteasome inhibition. BMC Biol 9:73PubMedCrossRefGoogle Scholar
  127. 127.
    Wong DJ, Nuyten DS, Regev A, Lin M, Adler AS, Segal E, van de Vijver MJ, Chang HY (2008) Revealing targeted therapy for human cancer by gene module maps. Cancer Res 68:369–378PubMedCrossRefGoogle Scholar
  128. 128.
    Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134PubMedCrossRefGoogle Scholar
  129. 129.
    Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10:351–364PubMedCrossRefGoogle Scholar
  130. 130.
    Neri P, Ren L, Gratton K, Stebner E, Johnson J, Klimowicz A, Duggan P, Tassone P, Mansoor A, Stewart DA, Lonial S, Boise LH, Bahlis NJ (2011) Bortezomib-induced “BRCAness” sensitizes multiple myeloma cells to PARP inhibitors. Blood 118:6368–6379PubMedCrossRefGoogle Scholar
  131. 131.
    Jiang F, Basavappa R (1999) Crystal structure of the cyclin-specific ubiquitin-conjugating enzyme from clam, E2-C, at 2.0 A resolution. Biochemistry 18:6471–6478CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Centre Pluridisciplinaire d’Oncologie, BH06University Hospital of LausanneLausanneSwitzerland
  2. 2.Centre Pluridisciplinaire d’OncologieCentre Hospitalier Universitaire VaudoisLausanneSwitzerland

Personalised recommendations