Advertisement

Molecular Biology Reports

, Volume 40, Issue 2, pp 1609–1613 | Cite as

High FLT3 expression and IL10 (G1082A) polymorphism in poor overall survival in calla acute lymphoblastic leukemia

  • Dayse Maria Vasconcelos de Deus
  • Paulo Roberto Eleutério de Souza
  • Maria Tereza Cartaxo Muniz
Article

Abstract

Patients with acute lymphoblastic leukemia presenting the immunophenotypic marker CD10+ (calla), usually has treatment profile good. The FLT3 molecular marker is listed as a prognostic factor, an important leukaemogenic marker in acute leukemias, also the polymorphism (G1082A) of the IL10 interleukin can to present pleiotropic effects in many diseases and could is associated to development of ALL. However, the FLT3 expression is variability among patients with calla-ALL. The aim of this study was to determine the FLT3 expression, to associate with the genotypes and allelic of G1082A (IL10) in 50 patients with calla-ALL and assess the overall survival at 98 months follow-up. The expression was assessed by quantitative real time PCR (RT-PCR), the G1082A polymorphism was identified by allele-specific PCR and for immunophenotypic classification was used specific markers of B lineage-calla. We observed that patients who died showed higher FLT3 expression (p = 0.005), worse survival (p = 0.0137) and the IL10G allele may favor the survival, because the IL10 GG and IL10 GA genotypes showed a low FLT3 expression (p < 0.05).

Keywords

Calla ALL FLT3 expression Overall survival IL10 (G1082A) polymorphism 

Notes

Acknowledgments

We thank the FACEPE (Foundation for assistance to science and technology of the state of Pernambuco), UNIPECLIN (Clinical Research Unit) and CAPES (Coordination for Improvement in Higher Education). We thank the support of Dr. Ednalva Pereira Leite (CEONHPE) and Dr. Vera Lúcia Lins de Morais (CEONHPE) for clinical competence.

References

  1. 1.
    Greaves MF, Brown C, Rapson NT et al (1975) Antisera to acute lymphoblastic leukemia cells. Clin Immunol Immunopathol 4:67–84PubMedCrossRefGoogle Scholar
  2. 2.
    Shipp MA, Look AT (1993) Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key! Blood 82:1052–1070PubMedGoogle Scholar
  3. 3.
    Mari B, Auberger P (1995) Structure et fonction des ectopeptidases du système immunitaire. Med Sci 11:681–690Google Scholar
  4. 4.
    Greaves MF, Hairi G, Newman RA et al (1983) Selective expression of the common acute lymphoblastic leukemia (gp100) antigen on immature lymphoid cells and their malignant counterparts. Blood 61:628–639PubMedGoogle Scholar
  5. 5.
    Cossman J, Neckers LM, Leonard WJ et al (1983) Polymorphonuclear neutrophils express the common acute lymphoblastic leukemia antigen. J Exp Med 157:1064–1069PubMedCrossRefGoogle Scholar
  6. 6.
    LeBien T, McCormack RT (1989) The common acute lymphoblastic leukemia antigen (CD10). Emancipation from a functional enigma. Blood 73:625–635PubMedGoogle Scholar
  7. 7.
    Pui CH, Behm FG, Crist WM (1993) Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 82:343–362PubMedGoogle Scholar
  8. 8.
    Rosnet O, Schiff C, Pebusque MJ, Marchetto et al (1993) Human FLT3/FLK2: gene: cDNA cloning and expression in hematopoietic cells. Blood 82(4):1110–1119PubMedGoogle Scholar
  9. 9.
    Ansari M, Sauty G, Labuda M et al (2009) Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood 114(7):1383–1386PubMedCrossRefGoogle Scholar
  10. 10.
    Moore KW et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRefGoogle Scholar
  11. 11.
    Edwards-Smith CJ, Jonsson JR, Purdie DM et al (1999) Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology 30:526–530PubMedCrossRefGoogle Scholar
  12. 12.
    Franchimont D, Martens H, Hagelstein MT et al (1999) Tumor necrosis factor alpha decreases, and interleukin-10 increases, the sensitivity of human monocytes to dexamethasone: potential regulation of the glucocorticoid receptor. J Clin Endocrinol Metab 84:2834–2839PubMedCrossRefGoogle Scholar
  13. 13.
    Quddus FF, Leventhal BG, Boyett JM et al (1985) Glucocorticoid receptors in immunological subtypes of childhood acute lymphocytic leukemia cells: a Pediatric Oncology Group Study. Cancer Res 45:6482–6486PubMedGoogle Scholar
  14. 14.
    Tissing WJ, Meijerink JP, den Boer ML et al (2003) Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 17:17–25PubMedCrossRefGoogle Scholar
  15. 15.
    Tsai SY, Carlstedt-Duke J, Weigel NL et al (1988) Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55:361–369PubMedCrossRefGoogle Scholar
  16. 16.
    Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 91:752–756PubMedCrossRefGoogle Scholar
  17. 17.
    Arya SK, Wong-Staal F, Gallo RC (1984) Dexamethasone-mediated inhibition of human T cell growth factor and gamma-interferon messenger RNA. J Immunol 133:273–276PubMedGoogle Scholar
  18. 18.
    Schuchard M, Landers JP, Sandhu NP et al (1993) Steroid hormone regulation of nuclear proto-oncogenes. Endocr Rev 14:659–669PubMedGoogle Scholar
  19. 19.
    Harmon JM, Norman MR, Fowlkes BJ et al (1979) Dexamethasone induces irreversible G1 arrest and death of a human lymphoid cell line. J Cell Physiol 98:267–278PubMedCrossRefGoogle Scholar
  20. 20.
    Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556PubMedCrossRefGoogle Scholar
  21. 21.
    Coustan-Smith E, Behm FG, Sanchez J et al (1998) Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 351:550–554PubMedCrossRefGoogle Scholar
  22. 22.
    Peng H-L, Zhang G-S, Gong F-J et al (2008) Fms-like tyrosine kinase (FLT)3 and FLT3 internal tandem duplication in different types of adult leukemia: analysis of 147 patients. Croatian Medical Journal Croat Med J 83:650–659CrossRefGoogle Scholar
  23. 23.
    Consolini R, Legitimo A, Rondelli R et al (1998) Clinical relevance of CD10 expression in childhood ALL. Haematologica 83:967–973PubMedGoogle Scholar
  24. 24.
    Cazé MO, Bueno D, Santos ME (2010) Referential study of a chemotherapy protocol for acute lymphocytic leukemia in childhood. Rev HCPA 30(1):5–12Google Scholar
  25. 25.
    Brown P, Small D (2004) FLT3 inhibitors: a paradigm for the development of targeted therapies for pediatric cancer. Eur J Cancer 40:707–721PubMedCrossRefGoogle Scholar
  26. 26.
    Borowitz MJ, Devidas M, Hunger SP et al (2008) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111(12):5477–5485PubMedCrossRefGoogle Scholar
  27. 27.
    Basso G, Veltroni M, Valsecchi MG et al (2009) Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 27(31):5168–5174PubMedCrossRefGoogle Scholar
  28. 28.
    Stow P, Key L, Chen X et al (2010) Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 115(23):4657–4663PubMedCrossRefGoogle Scholar
  29. 29.
    Verhoeven MA, Van Wering ER, Beishuizen A, Roeffen ET et al (1995) Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia 9:1523–1533PubMedGoogle Scholar
  30. 30.
    Baer MR, Stewart CC, Dodge RK et al (2001) High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 97:3574–3580PubMedCrossRefGoogle Scholar
  31. 31.
    Byrd JC, Mrózek K, Dodge RK et al (2012) Success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia, Group B (CALGB 8461). Blood 100(13):4325–4336CrossRefGoogle Scholar
  32. 32.
    Slovak ML, Kopecky KJ, Cassileth PA et al (2012) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study. Blood 96(13):4075–4083Google Scholar
  33. 33.
    Gaipa G, Basso G, Maglia O et al (2005) Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 19(1):49–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Dayse Maria Vasconcelos de Deus
    • 1
  • Paulo Roberto Eleutério de Souza
    • 2
  • Maria Tereza Cartaxo Muniz
    • 1
    • 3
  1. 1.Pediatric Hematology Oncology Center (CEONHPE/UPE)RecifeBrazil
  2. 2.Federal Rural University of Pernambuco (UFRPE)RecifeBrazil
  3. 3.University of Pernambuco (UPE)RecifeBrazil

Personalised recommendations