Molecular Biology Reports

, Volume 40, Issue 2, pp 1249–1254 | Cite as

Angiotensin-converting enzyme I/D polymorphism and the risk of thoracic aortic dissection in Chinese Han population

  • Quanmin Jing
  • Xiaozeng Wang
  • Yingyan Ma
  • Ming Yang
  • Guiqi Huang
  • Xin Zhao
  • Yaling Han


Thoracic aortic dissection (TAD) is a catastrophic cardiovascular disease and is thought to have a genetic basis. Various studies have indicated that renin-angiotensin system plays an important role in the pathogenesis of aortic disease. To determine the association of the I/D polymorphism of ACE gene with the risk of TAD in a Chinese Han population, a hospital-based case–control study was designed consisting of 161 subjects with TAD and 256 control subjects. The genotype frequency of the ACE I/D polymorphism was determined by using a polymerase chain reaction assay. The overall distribution of ACE I/D genotypes was significantly different between the two groups. Compared with the controls, the frequency of DD genotypes and the D allele of ACE gene were significantly increased in TAD patients. Multivariate logistic regression adjusting for conventional vascular risk factors confirmed the association between the ACE I/D polymorphism and the susceptibility to TAD (OR 2.14, 95 % CI 1.38–3.32, P = 0.001). Our data demonstrated that the ACE I/D polymorphism appeared to be an important risk factor in the development of TAD. However, further validation in large population-based studies is needed to confirm the finding.


Angiotensin-converting enzyme (ACE) Thoracic aortic dissection (TAD) Genetic polymorphism 



The study was supported by the Natural Science Foundation of Liaoning Province (grant no. 20062078 and 201102237).


  1. 1.
    Nienaber CA, Eagle KA (2003) Aortic dissection: new frontiers in diagnosis and management: part i: from etiology to diagnostic strategies. Circulation 108:628–635PubMedCrossRefGoogle Scholar
  2. 2.
    Wang DJ, Fan FD, Wang Q et al (2011) Preliminary characterization of acute aortic dissection in the mainland of china. Chin Med J (Engl.) 124:1726–1730Google Scholar
  3. 3.
    Jing QM, Han YL, Wang XZ et al (2008) Endovascular stent-grafts for acute and chronic type b aortic dissection: comparison of clinical outcomes. Chin Med J (Engl) 121:2213–2217Google Scholar
  4. 4.
    Kitai T, Kaji S, Yamamuro A et al (2009) Clinical outcomes of medical therapy and timely operation in initially diagnosed type a aortic intramural hematoma: a 20-year experience. Circulation 120:S292–S298PubMedCrossRefGoogle Scholar
  5. 5.
    Trimarchi S, Eagle KA, Nienaber CA et al (2010) Importance of refractory pain and hypertension in acute type b aortic dissection: insights from the International Registry of Acute Aortic Dissection (IRAD). Circulation 122:1283–1289PubMedCrossRefGoogle Scholar
  6. 6.
    LeMaire SA, Russell L (2011) Epidemiology of thoracic aortic dissection. Nat Rev Cardiol 8:103–113PubMedCrossRefGoogle Scholar
  7. 7.
    Mizuguchi T, Collod-Beroud G, Akiyama T et al (2004) Heterozygous TGFBR2 mutations in marfan syndrome. Nat Genet 36:855–860PubMedCrossRefGoogle Scholar
  8. 8.
    Attias D, Stheneur C, Roy C et al (2009) Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in marfan syndrome and related disorders. Circulation 120:2541–2549PubMedCrossRefGoogle Scholar
  9. 9.
    Schwarze U, Schievink WI, Petty E et al (2001) Haploinsufficiency for one col3a1 allele of type iii procollagen results in a phenotype similar to the vascular form of ehlers-danlos syndrome, ehlers-danlos syndrome type iv. Am J Hum Genet 69:989–1001PubMedCrossRefGoogle Scholar
  10. 10.
    Pannu H, Fadulu VT, Chang J et al (2005) Mutations in transforming growth factor-beta receptor type ii cause familial thoracic aortic aneurysms and dissections. Circulation 112:513–520PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu L, Vranckx R, Khau Van Kien P et al (2006) Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38:343–349PubMedCrossRefGoogle Scholar
  12. 12.
    Guo DC, Pannu H, Tran-Fadulu V et al (2007) Mutations in smooth muscle alpha-actin (acta2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39:1488–1493PubMedCrossRefGoogle Scholar
  13. 13.
    Regalado ES, Guo DC, Villamizar C et al (2011) Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res 109:680–686PubMedCrossRefGoogle Scholar
  14. 14.
    Wang L, Guo DC, Cao J et al (2010) Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet 87:701–707PubMedCrossRefGoogle Scholar
  15. 15.
    Albornoz G, Coady MA, Roberts M et al (2006) Familial thoracic aortic aneurysms and dissections–incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg 82:1400–1405PubMedCrossRefGoogle Scholar
  16. 16.
    Wang Y, Zhang W, Zhang Y et al (2006) VKORC1 haplotypes are associated with arterial vascular diseases (stroke, coronary heart disease, and aortic dissection). Circulation 113:1615–1621PubMedCrossRefGoogle Scholar
  17. 17.
    Chen L, Wang X, Carter SA et al (2006) A single nucleotide polymorphism in the matrix metalloproteinase 9 gene (–8202a/g) is associated with thoracic aortic aneurysms and thoracic aortic dissection. J Thorac Cardiovasc Surg 131:1045–1052PubMedCrossRefGoogle Scholar
  18. 18.
    Tangurek B, Ketenci B, Ozay B et al (2008) Lack of association between angiotensin-converting enzyme gene polymorphism and type i aortic dissection. J Int Med Res 36:714–720PubMedGoogle Scholar
  19. 19.
    Kalay N, Caglayan O, Akkaya H et al (2009) The deletion polymorphism of the angiotensin-converting enzyme gene is associated with acute aortic dissection. Tohoku J Exp Med 219:33–37PubMedCrossRefGoogle Scholar
  20. 20.
    Liu O, Li JR, Gong M et al (2010) Genetic analysis of six SNPs in candidate genes associated with high cross-race risk of development of thoracic aortic aneurysms and dissections in Chinese Han population. Acta Pharmacol Sin 31:1376–1380PubMedCrossRefGoogle Scholar
  21. 21.
    Eagleton MJ, Cho B, Lynch E et al (2006) Alterations in angiotensin converting enzyme during rodent aortic aneurysm formation. J Surg Res 132:69–73PubMedCrossRefGoogle Scholar
  22. 22.
    Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612PubMedCrossRefGoogle Scholar
  23. 23.
    Nishijo N, Sugiyama F, Kimoto K et al (1998) Salt-sensitive aortic aneurysm and rupture in hypertensive transgenic mice that overproduce angiotensin II. Lab Invest 78:1059–1066PubMedGoogle Scholar
  24. 24.
    Wang M, Lee E, Song W et al (2008) Microsomal prostaglandin e synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation 117:1302–1309PubMedCrossRefGoogle Scholar
  25. 25.
    Satoh K, Nigro P, Matoba T et al (2009) Cyclophilin a enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med 15:649–656PubMedCrossRefGoogle Scholar
  26. 26.
    Wang Y, Ait-Oufella H, Herbin O et al (2010) TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest 120:422–432PubMedCrossRefGoogle Scholar
  27. 27.
    Liao S, Miralles M, Kelley BJ et al (2001) Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors. J Vasc Surg 33:1057–1064PubMedCrossRefGoogle Scholar
  28. 28.
    Nagashima H, Uto K, Sakomura Y et al (2002) An angiotensin-converting enzyme inhibitor, not an angiotensin II type-1 receptor blocker, prevents beta-aminopropionitrile monofumarate-induced aortic dissection in rats. J Vasc Surg 36:818–823PubMedGoogle Scholar
  29. 29.
    Habashi JP, Judge DP, Holm TM et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of marfan syndrome. Science 312:117–121PubMedCrossRefGoogle Scholar
  30. 30.
    Habashi JP, Doyle JJ, Holm TM et al (2011) Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through erk antagonism. Science 332:361–365PubMedCrossRefGoogle Scholar
  31. 31.
    Hackam DG, Thiruchelvam D, Redelmeier DA (2006) Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study. Lancet 368:659–665PubMedCrossRefGoogle Scholar
  32. 32.
    Pola R, Gaetani E, Santoliquido A et al (2005) ACE DD genotype: a predisposing factor for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 29:227–232CrossRefGoogle Scholar
  33. 33.
    Jones GT, Thompson AR, van Bockxmeer FM et al (2008) Angiotensin II type 1 receptor 1166c polymorphism is associated with abdominal aortic aneurysm in three independent cohorts. Arterioscler Thromb Vasc Biol 28:764–770PubMedCrossRefGoogle Scholar
  34. 34.
    Lucarini L, Sticchi E, Sofi F et al (2009) ACE and TGFBR1 genes interact in influencing the susceptibility to abdominal aortic aneurysm. Atherosclerosis 202:205–210PubMedCrossRefGoogle Scholar
  35. 35.
    Korcz A, Mikolajczyk-Stecyna J, Gabriel M et al (2009) Angiotensin-converting enzyme (ACE, I/D) gene polymorphism and susceptibility to abdominal aortic aneurysm or aortoiliac occlusive disease. J Surg Res 153:76–82PubMedCrossRefGoogle Scholar
  36. 36.
    Tsai CT, Lai LP, Lin JL et al (2004) Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation 109:1640–1646PubMedCrossRefGoogle Scholar
  37. 37.
    Rigat B, Hubert C, Corvol P et al (1992) Pcr detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res 20:1433PubMedCrossRefGoogle Scholar
  38. 38.
    Shanmugam V, Sell KW, Saha BK (1993) Mistyping ACE heterozygotes. PCR Methods Appl 3:120–121PubMedCrossRefGoogle Scholar
  39. 39.
    Lindpaintner K, Pfeffer MA, Kreutz R et al (1995) A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 332:706–711PubMedCrossRefGoogle Scholar
  40. 40.
    Foffa I, Murzi M, Mariani M et al. (2012) Angiotensin-converting enzyme insertion/deletion polymorphism is a risk factor for thoracic aortic aneurysm in patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg [Epub ahead of print]Google Scholar
  41. 41.
    Moltzer E, Essers J, van Esch JH et al (2011) The role of the renin-angiotensin system in thoracic aortic aneurysms: clinical implications. Pharmacol Ther 131:50–60PubMedCrossRefGoogle Scholar
  42. 42.
    Rigat B, Hubert C, Alhenc-Gelas F et al (1990) An insertion/deletion polymorphism in the angiotensin i-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346PubMedCrossRefGoogle Scholar
  43. 43.
    Danser AH, Schalekamp MA, Bax WA et al (1995) Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 92:1387–1388Google Scholar
  44. 44.
    Felehgari V, Rahimi Z, Mozafari H et al (2011) ACE gene polymorphism and serum ACE activity in iranians type II diabetic patients with macroalbuminuria. Mol Cell Biochem 46:23–30CrossRefGoogle Scholar
  45. 45.
    Rahimi Z, Felehgari V, Rahimi M et al (2011) The frequency of factor v leiden mutation, ACE gene polymorphism, serum ACE activity and response to ACE inhibitor and angiotensin II receptor antagonist drugs in iranians type II diabetic patients with microalbuminuria. Mol Biol Rep 38:2117–2123PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Quanmin Jing
    • 1
  • Xiaozeng Wang
    • 1
  • Yingyan Ma
    • 1
  • Ming Yang
    • 1
  • Guiqi Huang
    • 1
  • Xin Zhao
    • 1
  • Yaling Han
    • 1
  1. 1.Cardiovascular Research Institute and Department of CardiologyShenyang Northern HospitalShenyangChina

Personalised recommendations