Advertisement

Molecular Biology Reports

, Volume 40, Issue 2, pp 1241–1247 | Cite as

PPARA, RXRA, NR1I2 and NR1I3 gene polymorphisms and lipid and lipoprotein levels in a Southern Brazilian population

  • Luciana O. Lima
  • Silvana Almeida
  • Mara H. Hutz
  • Marilu Fiegenbaum
Article

Abstract

Cardiovascular disease is the main cause of death worldwide, and dyslipidemia is an important multifactorial risk factor. Considering the involvement of nuclear receptors in metabolic pathways, and that some of the receptors act in lipid metabolism and homeostasis, the aim of the present study was to investigate the influence of genetic variations in RXRA, PPARA, NR1I2, and NR1I3 on lipid and lipoprotein levels. Five polymorphisms in the aforementioned genes were genotyped in 622 Brazilians of European descent by PCR-RFLP or TaqMan genotyping assays. In general, carriers of the A insertion of RXRA rs11381416 polymorphism showed higher levels of triglyceride (TG; 1.80 ± 1.20 vs. 1.52 ± 1.20 mmol/L; P = 0.020). Moreover, sexual dimorphic association was found (gender*NR1I3 rs2501873 genotype interaction P < 0.001), males with NR1I3 rs2501873 G/G genotype had lower TG levels (ANCOVA, P = 0.009). Our results suggest that polymorphisms in the RXRA and NR1I3 genes influence lipid profile in a Southern Brazilian population. However, these general and gender association require confirmation in subsequent studies.

Keywords

PPARA RXRA NR1I2 NR1I3 Polymorphisms Lipid and lipoprotein levels 

Notes

Acknowledgments

Financial support was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Instituto do Milenio (CNPq, Brazil) Programa de Apoio a Núcleos de Excelência (PRONEX, Brazil) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil), Programa de Bolsas REUNI/UFCSPA and PROAP-CAPES. Thanks are due to Ana Lúcia S. Antunes and Maria Perpétua de O. Pinto from the Clinical Analysis Laboratory of the Pharmacy College and to Gledison Gastaldo from the Biochemical Laboratory of the Clinical Hospital of Porto Alegre. We are also grateful to André Vargas, Marsel Arsand, Fabiana M. de Andrade and Vanessa S. Mattevi for their help in sample collection.

References

  1. 1.
    Redberg RF, Benjamin EJ, Bittner V, Braun LT, Goff DC Jr, Havas S, Labarthe DR, Limacher MC, Lloyd-Jones DM, Mora S, Pearson TA, Radford MJ, Smetana GW, Spertus JA, Swegler EW, American Academy of Family Physicians; American Association of Cardiovascular and Pulmonary Rehabilitation; Preventive Cardiovascular Nurses Association (2009) ACCF/AHA 2009 performance measures for primary prevention of cardiovascular disease in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Performance Measures for Primary Prevention of Cardiovascular Disease) developed in collaboration with the American Academy of Family Physicians; American Association of Cardiovascular and Pulmonary Rehabilitation; and Preventive Cardiovascular Nurses Association: endorsed by the American College of Preventive Medicine, American College of Sports Medicine, and Society for Women’s Health Research. J Am Coll Cardiol 54:1364–1405PubMedCrossRefGoogle Scholar
  2. 2.
    Polanczyk C, Ribeiro J (2009) Coronary artery disease in Brazil: contemporary management and future perspectives. Heart 95:870–876PubMedCrossRefGoogle Scholar
  3. 3.
    Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421Google Scholar
  4. 4.
    Kannel W, Vasan R (2009) Triglycerides as vascular risk factors: new epidemiologic insights. Curr Opin Cardiol 24:345–350PubMedCrossRefGoogle Scholar
  5. 5.
    Kathiresan S, Manning AK, Demissie S, D’Agostino RB, Surti A, Guiducci C, Gianniny L, Burtt NP, Melander O, Orho-Melander M, Arnett DK, Peloso GM, Ordovas JM, Cupples LA (2007) A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S17PubMedCrossRefGoogle Scholar
  6. 6.
    Ober C, Loisel D, Gilad Y (2008) Sex-specific genetic architecture of human disease. Nat Rev Genet 9:911–922PubMedCrossRefGoogle Scholar
  7. 7.
    Giguère V (1999) Orphan nuclear receptors: from gene to function. Endocr Rev 20:689–725PubMedCrossRefGoogle Scholar
  8. 8.
    Mandard S, Müller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61:393–416PubMedCrossRefGoogle Scholar
  9. 9.
    Cai Y, Konishi T, Han G, Campwala K, French S, Wan Y (2002) The role of hepatocyte RXR alpha in xenobiotic-sensing nuclear receptor-mediated pathways. Eur J Pharm Sci 15:89–96PubMedCrossRefGoogle Scholar
  10. 10.
    Wada T, Gao J, Xie W (2009) PXR and CAR in energy metabolism. Trends Endocrinol Metab 20:273–279PubMedCrossRefGoogle Scholar
  11. 11.
    Fiegenbaum M, de Andrade F, Hutz M (2007) Association between plasma lipid parameters and APOC3 genotypes in Brazilian subjects: effect of gender, smoking and APOE genotypes. Clin Chim Acta 380:175–181PubMedCrossRefGoogle Scholar
  12. 12.
    Obesity: preventing and managing the global epidemic (2000) Report of a WHO consultation. World Health Organ Tech Rep Ser 894(i-xii):1–253Google Scholar
  13. 13.
    Friedewald W, Levy R, Fredrickson D (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  14. 14.
    Lahiri D, Nurnberger JJ (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444PubMedCrossRefGoogle Scholar
  15. 15.
    Vohl MC, Lepage P, Gaudet D, Brewer CG, Bétard C, Perron P, Houde G, Cellier C, Faith JM, Després JP, Morgan K, Hudson TJ (2000) Molecular scanning of the human PPARa gene: association of the L162v mutation with hyperapobetalipoproteinemia. J Lipid Res 41:945–952PubMedGoogle Scholar
  16. 16.
    Vasků V, Bienertová Vasků J, Pávková Goldbergová M, Vasků A (2007) Three retinoid X receptor gene polymorphisms in plaque psoriasis and psoriasis guttata. Dermatology 214:118–124PubMedGoogle Scholar
  17. 17.
    Sociedade Brasileira de Cardiologia (2007) IV Diretriz Brasileira Sobre Dislipidemias e Prevenção da Aterosclerose Departamento de Aterosclerose da Sociedade Brasileira de Cardiologia. Arq Bras Cardiol 88:1–19Google Scholar
  18. 18.
    Roff D, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. Mol Biol Evol 6:539–545PubMedGoogle Scholar
  19. 19.
    Long J, Williams R, Urbanek M (1995) An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet 56:799–810PubMedGoogle Scholar
  20. 20.
    Peterson R, Goldman D, Long J (1999) Nucleotide sequence diversity in non-coding regions of ALDH2 as revealed by restriction enzyme and SSCP analysis. Hum Genet 104:177–187PubMedCrossRefGoogle Scholar
  21. 21.
    Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  22. 22.
    Lewontin R (1988) On measures of gametic disequilibrium. Genetics 120:849–852PubMedGoogle Scholar
  23. 23.
    Lamba J, Lamba V, Strom S, Venkataramanan R, Schuetz E (2008) Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab Dispos 36:169–181PubMedCrossRefGoogle Scholar
  24. 24.
    Ahuja H, Szanto A, Nagy L, Davies P (2003) The retinoid X receptor and its ligands: versatile regulators of metabolic function, cell differentiation and cell death. J Biol Regul Homeost Agents 17:29–45PubMedGoogle Scholar
  25. 25.
    Ledda-Columbano GM, Pibiri M, Concas D, Molotzu F, Simbula G, Cossu C, Columbano A (2003) Sex difference in the proliferative response of mouse hepatocytes to treatment with the CAR ligand, TCPOBOP. Carcinogenesis 24:1059–1065PubMedCrossRefGoogle Scholar
  26. 26.
    Weiss L, Pan L, Abney M, Ober C (2006) The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 38:218–222PubMedCrossRefGoogle Scholar
  27. 27.
    Lamba J, Lamba V, Schuetz E (2005) Genetic variants of PXR (NR1I2) and CAR (NR1I3) and their implications in drug metabolism and pharmacogenetics. Curr Drug Metab 6:369–383PubMedCrossRefGoogle Scholar
  28. 28.
    Yoon M (2009) The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol Res 60:151–159PubMedCrossRefGoogle Scholar
  29. 29.
    Maglich J, Lobe D, Moore J (2009) The nuclear receptor CAR (NR1I3) regulates serum triglyceride levels under conditions of metabolic stress. J Lipid Res 50:439–445PubMedCrossRefGoogle Scholar
  30. 30.
    Chen ES, Mazzotti DR, Furuya TK, Cendoroglo MS, Ramos LR, Araujo LQ, Burbano RR, Smith Mde A (2010) Association of PPARalpha gene polymorphisms and lipid serum levels in a Brazilian elderly population. Exp Mol Pathol 88:197–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Luciana O. Lima
    • 1
  • Silvana Almeida
    • 1
    • 2
  • Mara H. Hutz
    • 3
  • Marilu Fiegenbaum
    • 1
    • 2
  1. 1.Laboratório de Biologia Molecular, Programa de Pós-Graduação em Ciências da SaúdeUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  2. 2.Departamento de Ciências Básicas da SaúdeUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  3. 3.Departamento de GenéticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations