Molecular Biology Reports

, Volume 40, Issue 2, pp 1127–1134 | Cite as

Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats

  • Joachin D. Gbenou
  • Judith F. Ahounou
  • Huguette B. Akakpo
  • Anatole Laleye
  • Eléonore Yayi
  • Fernand Gbaguidi
  • Lamine Baba-Moussa
  • Raphael Darboux
  • Pierre Dansou
  • Mansourou Moudachirou
  • Simeon O. Kotchoni


Cymbopogon citratus and Eucalyptus citriodora are widely used herbs/plants as a source of ethnomedicines in tropical regions of the world. In this work, we studied the anti-inflammatory and gastroprotective effects of C. citratus and E. citriodora essential oils on formol-induced edema, and acetic acid induced abdominal cramps in Wistar rats. To fully understand the chemically induced anti-inflammatory properties of these plants, we first analyzed the chemical composition of the essential oils. A total of 16 chemical constituents accounting for 93.69 % of the oil, were identified in C. citratus among which, Geranial (27.04 %), neral (19.93 %) and myrcene (27.04 %) were the major constituents. For E. citriodora, 19 compounds representing 97.2 % of the extracted oil were identified. The dominant compound of E. citriodora essential oil was citronellal (83.50 %). In vivo analysis and histological assay showed that the two essential oils displayed significant dose dependent edema inhibition effect over time. They displayed strong analgesic and antipyretic properties similar to that induced by 50 mg/kg of acetylsalicylate of lysine. However, the E. citriodora essential oil was more effective than that of C. citratus. We identified significant numbers of aldehyde molecules in both essential oils mediating antioxidant activity that may contribute to the anti-inflammatory effects observed on the rats. Altogether, this work demonstrates the anti-inflammatory property of C. citratus and E. citriodora suggesting their potential role as adjuvant therapeutic alternatives in dealing with inflammatory-related diseases.


Essential oil Cymbopogon citratus Eucalyptus citriodora Anti-inflammation Wister rats 


  1. 1.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582PubMedGoogle Scholar
  2. 2.
    Mitscher LA, Baker WR (1998) A search for novel chemotherapy against tuberculosis amongst natural products. Pure Appl Chem 70:365–366CrossRefGoogle Scholar
  3. 3.
    Moundipa PF, Njayou FN, Yanditoum S, Sonké B, Tchouanguep FM (2002) Medicinal plants used in the Bamun region of the Western province of Cameroon against jaundice and other liver disorders. Camb J Biol Biochem Sci 2:39–46Google Scholar
  4. 4.
    Hedberg I, Hedberg O, Madati P, Mshigeni KE, Mshiu EN, Samuelsson G (1983) Inventory of plants used in traditional medicine in Tanzania. II. Plants of the families Acanthaceae–Cucurbitaceae. J Ethnopharmacol 9:105–128PubMedCrossRefGoogle Scholar
  5. 5.
    Oliver-Bever B (1986) Medicinal plants in tropical West Africa. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. 6.
    Singh RK, Dhiman RC, Mittal PK (2007) Studies on mosquito larvicidal properties of Eucalyptus citriodora Hook (family-Myrtaceae). J Commun Dis 39:233–236PubMedGoogle Scholar
  7. 7.
    Bhatt KR, Mehta RK, Shrivastana PN (1997) A simple method of recording anti-inflammatory effects on rat paw oedema. Indian J Physiol Pharmacol 21:399–400Google Scholar
  8. 8.
    Roulier G (1996) Les huiles essentielles pour votre santé. Traité pratique d’Aromathérapie: propriétés et indications thérapeutiques des essences de plantes. Collection médicale et paramédicale. Edition Dangles 50–65, 278Google Scholar
  9. 9.
    Sent T, Nag CAK (1991) Anti-inflammatory evaluation of a Pluchea indica roots extract. J Ethnopharmacol 33:125–141Google Scholar
  10. 10.
    Szekely JI, Kedves R, Mate I, Torok K, Tarnawa I (1997) Apparent antinociceptive and anti-inflammatory effects of GYKI 524666. Eur J Pharmacol 336:143–154PubMedCrossRefGoogle Scholar
  11. 11.
    Olsen P, Mayer O, Billie N, Wartzen G (1986) Carcinogenicity study on butylated hydroxytoluene (BHT) in Wistar rats exposed in utero. Food Chem Toxicol 24:1–12PubMedCrossRefGoogle Scholar
  12. 12.
    Daferera DJ, Ziogas BN, Polissiou MG (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot 22:39–44CrossRefGoogle Scholar
  13. 13.
    Santin MR, dos Santos AO, Nakamura CV, Filho BPD, Ferreira ICP, Ueda-Nakamura T (2009) In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res 5:1489–1496CrossRefGoogle Scholar
  14. 14.
    Juglal S, Govinden R, Odhav B (2002) Spice oils for the control of co-occurring mycotoxin producing fungi. J Food Prot 65:683–687PubMedGoogle Scholar
  15. 15.
    Velluti A, Sanchis V, Ramos AJ, Egido J, Marin S (2003) Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int J Food Microbiol 89:145–154PubMedCrossRefGoogle Scholar
  16. 16.
    Bassolé IHN, Lamien-Meda A, Bayala B, Obame LC, Ilboudo AJ, Franz C, Novak J, Nebié RC, Dicko MH (2011) Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 18:1070–1074PubMedCrossRefGoogle Scholar
  17. 17.
    Di Rosa M, Giroud JP, Willoughby DA (1971) Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 104:15–29PubMedCrossRefGoogle Scholar
  18. 18.
    Arya S, Kumar VL (2005) Anti-inflammatory efficacy of extracts of latex of Calotropis procera against different mediators of inflammation. Mediat Inflamm 4:228–232CrossRefGoogle Scholar
  19. 19.
    Fandohan P, Gnonlonfin B, Laleye A, Gbenou JD, Darboux R, Moudachirou M (2008) Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats. Food Chem Toxicol 46:2493–2497PubMedCrossRefGoogle Scholar
  20. 20.
    Adams RP (1989) Identification of essential oils by Ion Trap Mass spectroscopy. Academic Press, LondonGoogle Scholar
  21. 21.
    Koster R, Anderson M, de Beer E (1959) Acetic acid for analgesic screening. J Fed Froc 18:412Google Scholar
  22. 22.
    Sewell RDE, Spencer PSJ (1976) Antinociceptive avtivity of narcoticagonist and partial agonist analgesics and other agents in the tail immersion test in mice and rats. Neuropharmacology 15:683–688PubMedCrossRefGoogle Scholar
  23. 23.
    Abena AA, Kibori P, Bioka D (1995) Propriétés antalgiques et antipyrétiques de l’huile essentielle de Agératum conyzoïdes. Pharmacopée et Médecine Traditionnelle Africaine, VIII éd, 67–72Google Scholar
  24. 24.
    Abena AA, Ouanba JM, Keita A (1997) Activité anti-inflammatoire analgésique et antipyrétique de l’huile essentielle de Agératum conyzoïdes. Pharmacopée et Médecine Traditionnelle Africaine, IX éd, 48–55Google Scholar
  25. 25.
    Gbenou JD, Moudachirou M, Chalchat JC, Figeredo G (2007) Chemotypes in Melaleuca quinquenervia (CAV.) S.T. (Niaouli) from Benin using multivariate statistical analysis of their essential oils. J Essent Oil Res 19:101–104CrossRefGoogle Scholar
  26. 26.
    McPartland JM, Russo EB (2001) Cannabis and cannabis extracts: greater than the sum of their parts? J Cannabis Ther 1:103–132CrossRefGoogle Scholar
  27. 27.
    Distasi LC (1995) Amoebicidal compounds from medicinal plants. Parasitologia 37:29–39Google Scholar
  28. 28.
    Hostettmann K, Marton A, Wolfender JL (1995) Phytochemistry of plants used in traditional medicine. In: Hostettmann K, Marton A, Mailard M, Hamburger M (eds). Clarendon Press, Oxford, p 17Google Scholar
  29. 29.
    Abena AA, Gbenou JD, Yayi E, Moudachirou M, Ongoka RP, Ouamba JM, Silou T (2007) Comparative chemical and analgesic properties of essential oils of Cymbopogon nardus (L) Rendle of Benin and Congo. Afr J Tradit Complement Altern Med 4:267–272PubMedGoogle Scholar
  30. 30.
    Martin P, Soubrie P, Puech AJ (1990) Helpless behaviour induced by repeated restriction of activity in rats: specific reversal by antidepressant drugs. Psychiatr Pscholobiol 5:123–128Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Joachin D. Gbenou
    • 1
  • Judith F. Ahounou
    • 1
    • 2
  • Huguette B. Akakpo
    • 1
    • 2
  • Anatole Laleye
    • 3
  • Eléonore Yayi
    • 1
  • Fernand Gbaguidi
    • 1
  • Lamine Baba-Moussa
    • 4
  • Raphael Darboux
    • 3
  • Pierre Dansou
    • 2
  • Mansourou Moudachirou
    • 1
  • Simeon O. Kotchoni
    • 5
  1. 1.Laboratoire de Pharmacognosie et des Huiles Essentielles, Faculté des Sciences de la Santé, Faculté des Sciences et TechniquesUniversité d’Abomey CalaviCotonouBenin
  2. 2.Laboratoire de Physiologie de l’Effort, Institut National de la Jeunesse de l’Education Physique et du SportUniversité d’Abomey CalaviPorto-NovoBenin
  3. 3.Laboratoire d’Expérimentation Animale, Unité de Biologie Humaine, Faculté des Sciences de la SantéUniversité d’Abomey CalaviCotonouBenin
  4. 4.Laboratoire de Biologie et de Typage Moléculaire en Microbiologie; Faculté des Sciences et TechniquesUniversité d’Abomey-CalaviCotonouBenin
  5. 5.Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenUSA

Personalised recommendations