Molecular Biology Reports

, Volume 40, Issue 1, pp 211–215 | Cite as

Meta-analysis of the family-based association between the PTPN22 C1858T polymorphism and Type 1 diabetes

  • Young Ho Lee
  • Gwan Gyu Song


The aim of this study was to determine whether the functional protein tyrosine phosphatase nonreceptor 22 (PTPN22) C1858T polymorphism (rs2476601) confers susceptibility to type 1 diabetes (T1D). We conducted a meta-analysis of the transmission disequilibrium test (TDT) examining preferential transmission of the T allele of the PTPN22 C1858T polymorphism to children with T1D. A total of 11 studies were included in this meta-analysis, which contained 3,946 families and 2,024 transmissions of the PTPN22 T allele in 11 European populations. The frequencies of the transmitted and non-transmitted T allele were 1,250 (61.8 %) and 774 (38.2 %), respectively. The T allele was transmitted to T1D offspring more often than expected. Meta-analysis showed a significant association between the PTPN22 T allele and T1D (OR 1.611, 95 % CI 1.421, 1.827, p < 1 × 10−8) without between-study heterogeneity (I2 = 32.5, p = 0.138). Publication bias was observed in this meta-analysis (Egger’s regression test, p-values = 0.061), but the adjusted OR calculated using the trim and fill technique remained significant (OR 1.577, 95 % CI 1.392, 1.785). This meta-analysis of TDT confirms that the PTPN22 C1858T polymorphism is associated with T1D susceptibility in Europeans.


Protein tyrosine phosphatase nonreceptor 22 Polymorphism Type 1 diabetes Meta-analysis 



This study was supported by a grant from the Korea University Medical Center.

Conflict of interest

The authors have no financial or non-financial conflicts of interest to declare.


  1. 1.
    Noble JA, Erlich HA (2012) Genetics of type 1 diabetes. Cold Spring Harb Perspect Med 2(1):a007732Google Scholar
  2. 2.
    Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM (1999) Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93:2013–2024PubMedGoogle Scholar
  3. 3.
    Cloutier JF, Veillette A (1999) Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 189:111–121PubMedCrossRefGoogle Scholar
  4. 4.
    Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36:337–338PubMedCrossRefGoogle Scholar
  5. 5.
    Peng H, Zhou M, Xu WD, Xu K, Zhai Y, Li R, Wang W, Zhang YJ, Liu SS, Pan HF, Ye DQ (2012) Association of PTPN22 C1858T polymorphism and type 1 diabetes: a meta-analysis. Immunol Invest 41:484–496Google Scholar
  6. 6.
    Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516PubMedGoogle Scholar
  7. 7.
    Lavrikova E, Nikitin AG, Seregin Iu A, Zil’berman LI, Tsitlidze NM, Kuraeva TL, Peterkova VA, Dedov II, Nosikov VV (2009) Association of the C1858T polymorphism of the PTPN22 gene with type 1 diabetes. Mol Biol (Mosk) 43:1040–1043CrossRefGoogle Scholar
  8. 8.
    Zoledziewska M, Perra C, Orru V, Moi L, Frongia P, Congia M, Bottini N, Cucca F (2008) Further evidence of a primary, causal association of the PTPN22 620W variant with type 1 diabetes. Diabetes 57:229–234PubMedCrossRefGoogle Scholar
  9. 9.
    Chelala C, Duchatelet S, Joffret ML, Bergholdt R, Dubois-Laforgue D, Ghandil P, Pociot F, Caillat-Zucman S, Timsit J, Julier C (2007) PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 56:522–526PubMedCrossRefGoogle Scholar
  10. 10.
    Zhernakova A, Eerligh P, Wijmenga C, Barrera P, Roep BO, Koeleman BP (2005) Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immunity 6:459–461PubMedCrossRefGoogle Scholar
  11. 11.
    Ladner MB, Bottini N, Valdes AM, Noble JA (2005) Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol 66:60–64PubMedCrossRefGoogle Scholar
  12. 12.
    Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM, Vella A, Nutland S, Rance HE, Maier L, Barratt BJ, Guja C, Ionescu-Tirgoviste C, Savage DA, Dunger DB, Widmer B, Strachan DP, Ring SM, Walker N, Clayton DG, Twells RC, Gough SC, Todd JA (2004) Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 53:3020–3023PubMedCrossRefGoogle Scholar
  13. 13.
    Lee YH, Rho YH, Choi SJ, Ji JD, Song GG, Nath SK, Harley JB (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford) 46:49–56CrossRefGoogle Scholar
  14. 14.
    Lee YH, Rho YH, Choi SJ, Ji JD, Song GG (2006) Association of TNF-alpha −308 G/A polymorphism with responsiveness to TNF-alpha-blockers in rheumatoid arthritis: a meta-analysis. Rheumatol Int 27:157–161PubMedCrossRefGoogle Scholar
  15. 15.
    Lee YH, Harley JB, Nath SK (2006) Meta-analysis of TNF-alpha promoter -308 A/G polymorphism and SLE susceptibility. Eur J Hum Genet 14:364–371PubMedCrossRefGoogle Scholar
  16. 16.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedCrossRefGoogle Scholar
  17. 17.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463PubMedCrossRefGoogle Scholar
  18. 18.
    Davey Smith G, Egger M (1997) Meta-analyses of randomised controlled trials. Lancet 350:1182PubMedCrossRefGoogle Scholar
  19. 19.
    Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315:1533–1537PubMedCrossRefGoogle Scholar
  20. 20.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188PubMedCrossRefGoogle Scholar
  21. 21.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558PubMedCrossRefGoogle Scholar
  22. 22.
    Onengut-Gumuscu S, Buckner JH, Concannon P (2006) A haplotype-based analysis of the PTPN22 locus in type 1 diabetes. Diabetes 55:2883–2889PubMedCrossRefGoogle Scholar
  23. 23.
    Gregersen PK, Lee HS, Batliwalla F, Begovich AB (2006) PTPN22: setting thresholds for autoimmunity. Semin Immunol 18:214–223PubMedCrossRefGoogle Scholar
  24. 24.
    Lee HS, Korman BD, Le JM, Kastner DL, Remmers EF, Gregersen PK, Bae SC (2009) Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum 60:364–371PubMedCrossRefGoogle Scholar
  25. 25.
    Ban Y, Tozaki T, Taniyama M, Tomita M (2005) The codon 620 single nucleotide polymorphism of the protein tyrosine phosphatase-22 gene does not contribute to autoimmune thyroid disease susceptibility in the Japanese. Thyroid 15:1115–1118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of Internal MedicineKorea University Anam Hospital, Korea University College of MedicineSeoulKorea

Personalised recommendations