Molecular Biology Reports

, Volume 40, Issue 1, pp 43–50 | Cite as

The impact of the stromal cell-derived factor-1–3′A and E-selectin S128R polymorphisms on breast cancer

  • Panagiota Kontogianni
  • Constantinos P. Zambirinis
  • George Theodoropoulos
  • Maria Gazouli
  • Nikolaos V. Michalopoulos
  • John Flessas
  • Maria Liberi
  • George C. Zografos


Breast cancer is prone to metastasis even in early stage disease. Stromal cell-derived factor-1 (SDF-1) is a chemokine that has been associated with the egress of cancer cells from the primary focus and homing to distant sites, while E-selectin has been implicated in their trans-endothelial migration. This study was performed to evaluate the association between SDF-1–3′A and E-selectin S128R—two polymorphisms associated with enhanced function—and the risk of breast cancer, as well as their influence on breast cancer outcome. A retrospective analysis was conducted on 261 patients and 480 healthy controls using PCR–RFLP. The frequencies for the wild-type (GG), GA and AA genotypes of SDF-1 were 43.7, 45.2, and 11.1 % in patients, and 51.5, 41.3, and 7.3 % in healthy controls, respectively, while the SDF-1–3′A allelic frequency was 33.7 % at patients and 27.9 % at controls. The SDF-1–3′A carrier group of patients and the A allele of SDF-1 were overrepresented among the breast cancer cases (p = 0.04 and 0.02, respectively). For the E-selectin S128R polymorphism, the frequencies for the wild-type (AA), AC and CC genotypes were 58.6, 38.3, and 3.1 % in patients and 63.8, 31.4, and 3.8 % in controls, respectively, while the C allelic frequency was 22.2 % for patients and 19.5 % for controls. The CC genotype was associated with poorer survival. Otherwise, no significant association was detected between examined genotypes and tumor characteristics. Overall, our findings support that the SDF-1–3′A confers increased susceptibility to breast cancer and that the E-selectin S128R CC genotype may be related to poorer prognosis. Investigation in bigger cohorts of patients is warranted.


Breast cancer Polymorphisms Stromal cell-derived factor-1 CXCL12 SDF-1–3′A E-selectin S128R 


Conflict of interest

None declared.


  1. 1.
    Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D (2010) GLOBOCAN 2008, Cancer incidence and mortality worldwide: IARC CancerBase No. 10 [Internet]. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  2. 2.
    American Cancer Society (2010) Cancer Facts & Figures 2010. American Cancer Society, AtlantaGoogle Scholar
  3. 3.
    Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117(11):3155–3163. doi: 10.1172/JCI33295 PubMedCrossRefGoogle Scholar
  4. 4.
    Tang P, Skinner KA, Hicks DG (2009) Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready? Diagn Mol Pathol 18(3):125–132. doi: 10.1097/PDM.0b013e31818d107b PubMedCrossRefGoogle Scholar
  5. 5.
    Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695. doi: 10.1016/j.cell.2006.11.001 PubMedCrossRefGoogle Scholar
  6. 6.
    Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127PubMedCrossRefGoogle Scholar
  7. 7.
    Vagima Y, Lapid K, Kollet O, Goichberg P, Alon R, Lapidot T (2011) Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Methods Mol Biol 750:277–289. doi: 10.1007/978-1-61779-145-1_19 PubMedCrossRefGoogle Scholar
  8. 8.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56. doi: 10.1038/35065016 PubMedCrossRefGoogle Scholar
  9. 9.
    Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O’Brien TR, Jacobson LP, Detels R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, O’Brien SJ (1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 279(5349):389–393PubMedCrossRefGoogle Scholar
  10. 10.
    Theodoropoulos GE, Panoussopoulos GS, Michalopoulos NV, Zambirinis CP, Taka S, Stamopoulos P, Gazouli M, Zografos G (2010) Analysis of the stromal cell-derived factor 1–3′A gene polymorphism in pancreatic cancer. Mol Med Rep 3(4):693–698. doi: 10.3892/mmr_00000319 Google Scholar
  11. 11.
    Laubli H, Borsig L (2010) Selectins promote tumor metastasis. Semin Cancer Biol 20(3):169–177. doi: 10.1016/j.semcancer.2010.04.005 PubMedCrossRefGoogle Scholar
  12. 12.
    Petruzzelli L, Takami M, Humes HD (1999) Structure and function of cell adhesion molecules. Am J Med 106(4):467–476PubMedCrossRefGoogle Scholar
  13. 13.
    Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103(3):467–479PubMedCrossRefGoogle Scholar
  14. 14.
    Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunol Rev 230(1):97–113. doi: 10.1111/j.1600-065X.2009.00795.x PubMedCrossRefGoogle Scholar
  15. 15.
    Gout S, Morin C, Houle F, Huot J (2006) Death receptor-3, a new E-selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res 66(18):9117–9124. doi: 10.1158/0008-5472.CAN-05-4605 PubMedCrossRefGoogle Scholar
  16. 16.
    Wenzel K, Hanke R, Speer A (1994) Polymorphism in the human E-selectin gene detected by PCR-SSCP. Hum Genet 94(4):452–453PubMedCrossRefGoogle Scholar
  17. 17.
    Revelle BM, Scott D, Beck PJ (1996) Single amino acid residues in the E- and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J Biol Chem 271(27):16160–16170PubMedCrossRefGoogle Scholar
  18. 18.
    Edge SB, American Joint Committee on Cancer (2010) AJCC cancer staging manual. 7th edn. Springer, New YorkGoogle Scholar
  19. 19.
    Panoussopoulos GS, Theodoropoulos G, Michalopoulos NV, Gazouli M, Flessas J, Taka S, Stamopoulos P, Manouras A, Zografos GC (2010) Analysis of E-selectin S128R gene polymorphism in pancreatic cancer. J Surg Oncol 102(6):604–607. doi: 10.1002/jso.21648 PubMedCrossRefGoogle Scholar
  20. 20.
    Biancone L, Araki M, Araki K, Vassalli P, Stamenkovic I (1996) Redirection of tumor metastasis by expression of E-selectin in vivo. J Exp Med 183(2):581–587PubMedCrossRefGoogle Scholar
  21. 21.
    Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG (2005) Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res 7(4):R402–R410. doi: 10.1186/bcr1022 PubMedCrossRefGoogle Scholar
  22. 22.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. doi: 10.1016/j.cell.2005.02.034 PubMedCrossRefGoogle Scholar
  23. 23.
    Cabioglu N, Summy J, Miller C, Parikh NU, Sahin AA, Tuzlali S, Pumiglia K, Gallick GE, Price JE (2005) CXCL-12/stromal cell-derived factor-1alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65(15):6493–6497. doi: 10.1158/0008-5472.CAN-04-1303 PubMedCrossRefGoogle Scholar
  24. 24.
    Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86(12):1221–1232. doi: 10.1038/labinvest.3700482 PubMedCrossRefGoogle Scholar
  25. 25.
    Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198(9):1391–1402. doi: 10.1084/jem.20030267 PubMedCrossRefGoogle Scholar
  26. 26.
    Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550. doi: 10.1038/nrc1388 PubMedCrossRefGoogle Scholar
  27. 27.
    Zafiropoulos A, Crikas N, Passam AM, Spandidos DA (2004) Significant involvement of CCR2-64I and CXCL12-3a in the development of sporadic breast cancer. J Med Genet 41(5):e59PubMedCrossRefGoogle Scholar
  28. 28.
    Razmkhah M, Talei AR, Doroudchi M, Khalili-Azad T, Ghaderi A (2005) Stromal cell-derived factor-1 (SDF-1) alleles and susceptibility to breast carcinoma. Cancer Lett 225(2):261–266. doi: 10.1016/j.canlet.2004.10.039 PubMedCrossRefGoogle Scholar
  29. 29.
    Hassan S, Baccarelli A, Salvucci O, Basik M (2008) Plasma stromal cell-derived factor-1: host derived marker predictive of distant metastasis in breast cancer. Clin Cancer Res 14(2):446–454. doi: 10.1158/1078-0432.CCR-07-1189 PubMedCrossRefGoogle Scholar
  30. 30.
    Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25(4):305–324. doi: 10.1007/s10585-007-9098-2 PubMedCrossRefGoogle Scholar
  31. 31.
    Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9(12):874–885. doi: 10.1038/nrc2761 PubMedCrossRefGoogle Scholar
  32. 32.
    Renkonen J, Paavonen T, Renkonen R (1997) Endothelial and epithelial expression of sialyl Lewis(x) and sialyl Lewis(a) in lesions of breast carcinoma. Int J Cancer 74(3):296–300. doi: 10.1002/(SICI)1097-0215(19970620)74:3<296:AID-IJC11>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  33. 33.
    Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, Picco G, Gillett C, Papp SL, Schaffer L, Tutt A, Taylor-Papadimitriou J, Pinder SE, Burchell JM (2011) Selectin ligand sialyl-Lewis × antigen drives metastasis of hormone-dependent breast cancers. Cancer Res 71(24):7683–7693. doi: 10.1158/0008-5472.CAN-11-1139 PubMedCrossRefGoogle Scholar
  34. 34.
    Hebbar M, Adenis A, Revillion F, Duhamel A, Romano O, Truant S, Libersa C, Giraud C, Triboulet JP, Pruvot FR, Peyrat JP (2009) E-selectin gene S128R polymorphism is associated with poor prognosis in patients with stage II or III colorectal cancer. Eur J Cancer 45(10):1871–1876. doi: 10.1016/j.ejca.2009.03.011 PubMedCrossRefGoogle Scholar
  35. 35.
    Naidu R, Har YC, Taib NA (2011) Polymorphic variant Ser128Arg of E-selectin is associated with breast cancer risk and high grade tumors. Onkologie 34(11):592–597. doi: 10.1159/000334060 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Panagiota Kontogianni
    • 1
  • Constantinos P. Zambirinis
    • 1
    • 2
  • George Theodoropoulos
    • 1
  • Maria Gazouli
    • 3
  • Nikolaos V. Michalopoulos
    • 1
  • John Flessas
    • 1
  • Maria Liberi
    • 4
  • George C. Zografos
    • 1
  1. 1.First Propaedeutic Surgical DepartmentHippocration University HospitalAthensGreece
  2. 2.S. Arthur Localio Laboratory, Department of SurgeryNew York University School of MedicineNew YorkUSA
  3. 3.Departments of Biology, School of MedicineUniversity of AthensAthensGreece
  4. 4.Departments of Physiology, School of MedicineUniversity of AthensAthensGreece

Personalised recommendations