Molecular Biology Reports

, Volume 39, Issue 12, pp 10131–10137 | Cite as

TGF-β polymorphism and its expression correlated with CXCR4 expression in human breast cancer

  • Julie Massayo Maeda Oda
  • Karen Brajão de Oliveira
  • Roberta Losi Guembarovski
  • Kalil William Alves de Lima
  • Ana Cristina da Silva do Amaral Herrera
  • Alda Losi Guembarovski
  • Walter Jorge Sobrinho
  • Daniela Rudgeri Derossi
  • Maria Angelica Ehara Watanabe


The role of chemokines and the growth factors has been extensively analyzed both in cancer risk and tumor progression. The transforming growth factor beta (TGF-β) and chemokine (C-X-C motif) receptor 4 (CXCR4) genes are implicated in several diseases, including breast cancer. Genomic DNA was obtained from 21 samples of peripheral blood or from normal tissue, previously fixed in formalin and embedded in paraffin for TGF-β T869C polymorphism analyses. Total cellular RNA was extracted from the same 21 patients, but from fresh tissue (tumor and adjacent healthy from the same breast) for expression analysis by Real Time PCR. No significant differences were observed in genotype distribution according to clinicopathological characteristics. Transforming growth factor beta (TGF-β) mRNA expression was assessed according to T869C polymorphism and CC patients presented a higher TGF-β expression but not significant when compared to other genotypes (p = 0.064). A positive correlation was observed in relative mRNA expressions of CXCR4 and TGF-β (p = 0.020). It is known that overexpression of TGF-β by both tumor and stromal tissue can facilitate the development of metastases, mainly by TGF-β stimulated angiogenesis and increased tumor cell motility. Our findings suggested a role of these genes as progression markers for breast carcinoma.


Breast cancer TGF-β CXCR4 qRT-PCR 



The authors would like to acknowledge the volunteers who made this study possible and the Cancer Hospital of Londrina, Micropar and Preventivo Histopathological Laboratories, Londrina, PR, Brazil. This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária-Programa Pesquisa para o SUS: gestão compartilhada em saúde (PPSUS) and the Londrina State University Graduate Coordination (PROPPG-UEL). The authors would like to express their gratitude to GENOPAR for supplying laboratory equipment. The entire article was revised by Adrienne Toledo, a British-born scientific editor.

Conflict of interest

The authors declared that they had no conflict of interest related to the publication of this manuscript.


  1. 1.
    Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8(1):1–9PubMedCrossRefGoogle Scholar
  2. 2.
    Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116(Pt 2):217–224PubMedCrossRefGoogle Scholar
  3. 3.
    Tan AR, Alexe G, Reiss M (2009) Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 115(3):453–495. doi: 10.1007/s10549-008-0184-1 PubMedCrossRefGoogle Scholar
  4. 4.
    Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D’Amore PA (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205(2):491–501. doi: 10.1084/jem.20072041 PubMedCrossRefGoogle Scholar
  5. 5.
    Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134(3):392–404. doi: 10.1016/j.cell.2008.07.025 PubMedCrossRefGoogle Scholar
  6. 6.
    Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV (1998) Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 66(8):1014–1020PubMedCrossRefGoogle Scholar
  7. 7.
    Cambien F, Ricard S, Troesch A, Mallet C, Generenaz L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O (1996) Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Temoin de l’Infarctus du Myocarde (ECTIM) Study. Hypertension 28(5):881–887PubMedCrossRefGoogle Scholar
  8. 8.
    Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC (2003) A transforming growth factor beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63(10):2610–2615PubMedGoogle Scholar
  9. 9.
    Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P (2000) Transforming growth factor-beta 1 hyper expression in African-American hypertensives: a novel mediator of hypertension and/or target organ damage. Proc Nat Acad Sci USA 97(7):3479–3484. doi: 10.1073/pnas.050420897 PubMedGoogle Scholar
  10. 10.
    Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ, Koslov S, Shiloh Y, Barcellos-Hoff MH (2006) Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res 66(22):10861–10869. doi: 10.1158/0008-5472.CAN-06-2565 PubMedCrossRefGoogle Scholar
  11. 11.
    Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23(7):879–894. doi: 10.1634/stemcells.2004-0342 PubMedCrossRefGoogle Scholar
  12. 12.
    do Val Carneiro JL, Nixdorf SL, Mantovani MS, da Silva do Amaral Herrera AC, Aoki MN, Amarante MK, Fabris BA, Pelegrinelli Fungaro MH, Ehara Watanabe MA (2009) Plasma malondialdehyde levels and CXCR4 expression in peripheral blood cells of breast cancer patients. J Cancer Res and Clin Oncol 135 (8):997–1004. doi: 10.1007/s00432-008-0535-7 Google Scholar
  13. 13.
    Holland JD, Kochetkova M, Akekawatchai C, Dottore M, Lopez A, McColl SR (2006) Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer Res 66(8):4117–4124. doi: 10.1158/0008-5472.CAN-05-1631 PubMedCrossRefGoogle Scholar
  14. 14.
    Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG (2005) Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res 7(4):R402–R410. doi: 10.1186/bcr1022 PubMedCrossRefGoogle Scholar
  15. 15.
    Zhao XP, Huang YY, Huang Y, Lei P, Peng JL, Wu S, Wang M, Li WH, Zhu HF, Shen GX (2010) Transforming growth factor-beta1 upregulates the expression of CXC chemokine receptor 4 (CXCR4) in human breast cancer MCF-7 cells. Acta Pharmacol Sin 31(3):347–354. doi: 10.1038/aps.2009.204 PubMedCrossRefGoogle Scholar
  16. 16.
    UICC, Statistics CoCSCaA (2002) Clinical stage classification and presentation of results. Malignant Tumors of the Breast and Larynx. International Union Against Cancer, ParisGoogle Scholar
  17. 17.
    Lorne T. Kirby (1993) DNA fingerprinting: an introduction. Oxford University Press, USAGoogle Scholar
  18. 18.
    Isola J, DeVries S, Chu L, Ghazvini S, Waldman F (1994) Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. Am J Pathol 145(6):1301–1308PubMedGoogle Scholar
  19. 19.
    Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A, Noh DY, Ahn SH, Hirvonen A, Kang D (2005) Genetic polymorphisms of TGF-beta1 & TNF-beta and breast cancer risk. Breast Cancer Res Treat 90(2):149–155. doi: 10.1007/s10549-004-3859-2 PubMedCrossRefGoogle Scholar
  20. 20.
    Amarante MK, De Lucca FL, de Oliveira CE, Pelegrinelli Fungaro MH, Reiche EM, Muxel SM, Ehara Watanabe MA (2005) Expression of noncoding mRNA in human blood cells activated with synthetic peptide of HIV. Blood Cells Mol Dis 35(2):286–290. doi: 10.1016/j.bcmd.2005.06.004 PubMedCrossRefGoogle Scholar
  21. 21.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45PubMedCrossRefGoogle Scholar
  22. 22.
    Brazil (2009) Instituto Nacional de Câncer, Estimativa 2010: incidência de câncer no Brasil. Ministério da Saúde, Instituto Nacional de Câncer (INCA)Google Scholar
  23. 23.
    Lacroix M, Toillon RA, Leclercq G (2004) Stable ‘portrait’ of breast tumors during progression: data from biology, pathology and genetics. Endocr Relat Cancer 11(3):497–522PubMedCrossRefGoogle Scholar
  24. 24.
    Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA, Evans AJ, Blamey R, Reis-Filho JS, Foulkes WD, Ellis IO (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res : an official journal of the Amer Assoc for Cancer Res 15(7):2302–2310. doi: 10.1158/1078-0432.CCR-08-2132 CrossRefGoogle Scholar
  25. 25.
    Fulop T, Kotb R, Fortin CF, Pawelec G, de Angelis F, Larbi A (2010) Potential role of immunosenescence in cancer development. Ann N Y Acad Sci 1197:158–165. doi: 10.1111/j.1749-6632.2009.05370.x PubMedCrossRefGoogle Scholar
  26. 26.
    Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, Nakajima Y, Kajiro M, Komatsu Y, Fujimura A, Hirota R, Murayama A, Kimura K, Imamura T, Yanagisawa J (2010) Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem 285(19):14747–14755. doi: 10.1074/jbc.M109.093039 PubMedCrossRefGoogle Scholar
  27. 27.
    Ciocca DR, Elledge R (2000) Molecular markers for predicting response to tamoxifen in breast cancer patients. Endocrine 13(1):1–10. doi: 10.1385/ENDO:13:1:1 PubMedCrossRefGoogle Scholar
  28. 28.
    Bierie B, Moses HL (2009) Gain or loss of TGFbeta signaling in mammary carcinoma cells can promote metastasis. Cell Cycl 8(20):3319–3327CrossRefGoogle Scholar
  29. 29.
    Le Marchand L, Haiman CA, van den Berg D, Wilkens LR, Kolonel LN, Henderson BE (2004) T29C polymorphism in the transforming growth factor beta1 gene and postmenopausal breast cancer risk: the Multiethnic Cohort Study. Cancer Epidemiol Biomark & Prev 13(3):412–415Google Scholar
  30. 30.
    Hishida A, Iwata H, Hamajima N, Matsuo K, Mizutani M, Iwase T, Miura S, Emi N, Hirose K, Tajima K (2003) Transforming growth factor B1 T29C polymorphism and breast cancer risk in Japanese women. Breast Cancer 10(1):63–69PubMedCrossRefGoogle Scholar
  31. 31.
    Hinke V, Seck T, Clanget C, Scheidt-Nave C, Ziegler R, Pfeilschifter J (2001) Association of transforming growth factor-beta1 (TGFbeta1) T29→C gene polymorphism with bone mineral density (BMD), changes in BMD, and serum concentrations of TGF-beta1 in a population-based sample of postmenopausal german women. Calcif Tissue Int 69(6):315–320PubMedCrossRefGoogle Scholar
  32. 32.
    Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y (2000) Association of a T29→C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101(24):2783–2787PubMedCrossRefGoogle Scholar
  33. 33.
    Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2(2):125–132PubMedCrossRefGoogle Scholar
  34. 34.
    Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146. doi: 10.1146/annurev.immunol.24.021605.090737 PubMedCrossRefGoogle Scholar
  35. 35.
    Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11(11):S44–S51PubMedCrossRefGoogle Scholar
  36. 36.
    Murray PA, Barrett-Lee P, Travers M, Luqmani Y, Powles T, Coombes RC (1993) The prognostic significance of transforming growth factors in human breast cancer. Br J Cancer 67(6):1408–1412PubMedCrossRefGoogle Scholar
  37. 37.
    Mu L, Katsaros D, Lu L, Preti M, Durando A, Arisio R, Yu H (2008) TGF-beta1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival. Br J Cancer 99(8):1357–1363. doi: 10.1038/sj.bjc.6604689 PubMedCrossRefGoogle Scholar
  38. 38.
    Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21(1):49–59. doi: 10.1016/j.cytogfr.2009.11.008 PubMedCrossRefGoogle Scholar
  39. 39.
    Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL (2008) Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 68(6):1809–1819. doi: 10.1158/0008-5472.CAN-07-5597 PubMedCrossRefGoogle Scholar
  40. 40.
    Standish LJ, Sweet ES, Novack J, Wenner CA, Bridge C, Nelson A, Martzen M, Torkelson C (2008) Breast cancer and the immune system. J Soc Integ Oncol 6(4):158–168Google Scholar
  41. 41.
    Oda JMML-GR, Watanabe MAE (2012) Transforming growth factor β (TGF-β) and regulatory T cells (Treg): the interface of tumor and host immunity. Eur J Clin Med Oncol 4(1):27–32Google Scholar
  42. 42.
    Su H, Sobrino Najul EJ, Toth TA, Ng CM, Lelievre SA, Fred M, Tang CK (2011) Chemokine receptor CXCR4-mediated transformation of mammary epithelial cells by enhancing multiple RTKs expression and deregulation of the p53/MDM2 axis. Cancer Lett 307(2):132–140. doi: 10.1016/j.canlet.2011.03.025 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Julie Massayo Maeda Oda
    • 1
  • Karen Brajão de Oliveira
    • 1
  • Roberta Losi Guembarovski
    • 1
  • Kalil William Alves de Lima
    • 1
  • Ana Cristina da Silva do Amaral Herrera
    • 1
    • 2
  • Alda Losi Guembarovski
    • 3
    • 4
  • Walter Jorge Sobrinho
    • 5
  • Daniela Rudgeri Derossi
    • 2
    • 3
  • Maria Angelica Ehara Watanabe
    • 1
  1. 1.Department of Pathological Sciences, Biological Sciences CenterState University of LondrinaLondrinaBrazil
  2. 2.Center of Cancer Research on Londrina Cancer HospitalLondrina Cancer HospitalLondrinaBrazil
  3. 3.Laboratory of Pathology, Healthy Sciences CenterState University of LondrinaLondrinaBrazil
  4. 4.Laboratory of Applied PathologyMICROPARLondrinaBrazil
  5. 5.Gineco-Med Clinical of MastologyLondrinaBrazil

Personalised recommendations