Molecular Biology Reports

, Volume 39, Issue 10, pp 9747–9754 | Cite as

Primary culture of hemocytes from Eriocheir sinensis and their immune effects to the novel crustacean pathogen Spiroplasma eriocheiris

  • Tingming Liang
  • Hong Ji
  • Jie Du
  • Jiangtao Ou
  • Wenjie Li
  • Ting Wu
  • Qingguo Meng
  • Wei Gu
  • Wen Wang


To investigate the interaction between Chinese mitten crab Eriocheir sinensis hemocytes and the pathogen Spiroplasma eriocheiris, a system for in vitro culture of E. sinensis hemocytes with high viability was developed. Following optimization of conditions, hemocytes survived for >35 days. After challenge with the novel crustacean pathogen Seriocheiris, E. sinensis hemocytes began to develop vacuoles, and then they began to die (within 60 h). Real-time RT-PCR analysis of S. eriocheiris infected hemocytes identified increased expression levels of anti-lipopolysaccharide factor (ALF), peroxinectin (Pox) and clip domain serine protease (cSP) genes. The expression levels of ALF, Pox, and cSP genes in hemocytes of E. sinensis demonstrated that all three immune genes were significantly induced by challenge with S. eriocheiris. Increases in Pox mRNA levels were highest (up to 36-fold) and peaked at 24–48 h post-challenge (pc) (P < 0.05) and lesser increases were evident with ALF and cSP, peaking at 24 h and at 12–48 h pc, respectively. The hemocytes culture method described herein provides a feasible in vitro research model of E. sinensis that can be used to study its immune reactions against various crab pathogens.


Eriocheir sinensis Cell culture Defense response Spiroplasma eriocheiris Real-time PCR Immune-related gene 



We appreciate Professor O. Roger Anderson’s assistance in editing the manuscript. This work was supported by grants from the National Natural Sciences Foundation of China (NSFC No. 31000072; 31170120), Postdoctoral Foundation of Jiangsu Province (No. 1001043C), Project for aquaculture in Jiangsu Province (No. J2009-43; No. PJ2011-65), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Cultivation Plan for Excellent Doctoral Dissertations of Nanjing Normal University (No. 1243211601031).


  1. 1.
    Wang W, Gu ZF (2002) Rickettsia-like organism associated with tremor disease and mortality of the Chinese mitten crab Eriocheir sinensis. Dis Aquat Org 48:149–153PubMedCrossRefGoogle Scholar
  2. 2.
    Wang W, Wen BH, Gasparich GE, Zhu NN, Rong LW et al (2004) A spiroplasma associated with tremor disease in the Chinese mitten crab (Eriocheir sinensis). Microbiology-Sgm 150:3035–3040CrossRefGoogle Scholar
  3. 3.
    Wang W, Gu W, Gasparich G, Bi K, Ou J et al (2011) Spiroplasma eriocheiris sp. nov., a novel species associated with mortalities in Eriocheir sinensis, Chinese mitten crab. Int J Syst Evol Microbiol 61:703–708PubMedCrossRefGoogle Scholar
  4. 4.
    Wang W, Rong LW, Gu W, Du KH, Chen JX (2003) Study on experimental infections of Spiroplasma from the Chinese mitten crab in crayfish, mice and embryonated chickens. Res Microbiol 154:677–680PubMedCrossRefGoogle Scholar
  5. 5.
    Wang W, Chen JX, Du KH, Xu ZK (2004) Morphology of spiroplasmas in the Chinese mitten crab Eriocheir sinensis associated with tremor disease. Res Microbiol 155:630–635PubMedCrossRefGoogle Scholar
  6. 6.
    Jiang H, Cai YM, Chen LQ, Zhang XW, Hu SN et al (2009) Functional Annotation and Analysis of Expressed Sequence Tags from the Hepatopancreas of Mitten Crab (Eriocheir sinensis). Mar Biotechnol 11:317–326PubMedCrossRefGoogle Scholar
  7. 7.
    Dong CH, Zhao JM, Song LS, Wang LL, Qiu LM et al (2009) The immune responses in Chinese mitten crab Eriocheir sinensis challenged with double-stranded RNA. Fish Shellfish Immunol 26:438–442PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao DX, Song SH, Wang Q, Zhang XW, Hu SN et al (2009) Discovery of immune-related genes in Chinese mitten crab (Eriocheir sinensis) by expressed sequence tag analysis of haemocytes. Aquaculture 287:297–303CrossRefGoogle Scholar
  9. 9.
    Jie Du, Jiangtao Ou, Wenjie Li, Zhengfeng Ding, Ting Wu et al (2012) Primary hemocyte culture of the freshwater prawn Macrobrachium rosenbergii and its susceptibility to the novel pathogen spiroplasma strain MR-1008. Aquaculture 330–333:21–28Google Scholar
  10. 10.
    Jiravanichpaisal P, Sricharoen S, Söderhäll I, Söderhäll K (2006) White spot syndrome virus (WSSV) interaction with crayfish haemocytes. Fish Shellfish Immunol 20:718–727PubMedCrossRefGoogle Scholar
  11. 11.
    Watthanasurorot A, Jiravanichpaisal P, Söderhäll I, Söderhäll K (2010) A gC1qR Prevents White Spot Syndrome Virus Replication in the Freshwater Crayfish Pacifastacus leniusculus. J Virol 84:10844PubMedCrossRefGoogle Scholar
  12. 12.
    Söderhäll I, Bangyeekhun E, Mayo S, Söderhäll K (2003) Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus* 1. Dev Comp Immunol 27:661–672PubMedCrossRefGoogle Scholar
  13. 13.
    van de Braak CBT, Botterblom MHA, Huisman EA, Rombout JHWM, van der Knaap WPW (2002) Preliminary study on haemocyte response to white spot syndrome virus infection in black tiger shrimp Penaeus monodon. Dis Aquat Org 51:149–155PubMedCrossRefGoogle Scholar
  14. 14.
    Zeng Y, Lu CP (2009) Identification of differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. Fish Shellfish Immunol 26:646–650PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang YS, Zhan WB, Wang SB, Xing J (2006) Development of primary shrimp hemocyte cultures of Penaeus chinensis to study white spot syndrome virus (WSSV) infection. Aquaculture 253:114–119CrossRefGoogle Scholar
  16. 16.
    Shi Z, Wang H, Zhang J, Xie Y, Li L et al (2005) Response of crayfish, Procambarus clarkii, haemocytes infected by white spot syndrome virus. J Fish Dis 28:151–156PubMedCrossRefGoogle Scholar
  17. 17.
    Ding ZF, Bi KR, Wu T, Gu W, Wang W et al (2007) A simple PCR method for the detection of pathogenic spiroplasmas in crustaceans and environmental samples. Aquaculture 265:49–54CrossRefGoogle Scholar
  18. 18.
    Walton A, Smith V (1999) Primary culture of the hyaline haemocytes from marine decapods. Fish Shellfish Immunol 9:181–194CrossRefGoogle Scholar
  19. 19.
    Gong N, Ma Z, Li Q, Yan Z, Xie L et al (2008) Characterization of calcium deposition and shell matrix protein secretion in primary mantle tissue culture from the marine pearl oyster Pinctada fucata. Mar Biotechnol 10:457–465PubMedCrossRefGoogle Scholar
  20. 20.
    George S, Dhar A (2010) An improved method of cell culture system from eye stalk, hepatopancreas, muscle, ovary, and hemocytes of Penaeus vannamei. In Vitro Cell Dev An 46:1–10Google Scholar
  21. 21.
    Lang G, Nomura N, Wang B, Matsumura M (2002) Penaeid (Penaeus japonicus) lymphoid cells replicate by cell division in vitro. In Vitro Cell Dev -An 38:142–145CrossRefGoogle Scholar
  22. 22.
    Chen SN, Wang CS (1999) Establishment of cell culture systems from penaeid shrimp and their susceptibility to white spot disease and yellow head viruses. Meth Cell Sci 21:199–206CrossRefGoogle Scholar
  23. 23.
    Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCt method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  24. 24.
    Sderhll K, Cerenius L (1992) Crustacean immunity. Annu Rev Fish Dis 2:3–23CrossRefGoogle Scholar
  25. 25.
    Roch P (1999) Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture 172:125–145CrossRefGoogle Scholar
  26. 26.
    Li CW, Shields JD (2007) Primary culture of hemocytes from the Caribbean spiny lobster, Panulirus argus, and their susceptibility to Panulirus argus Virus 1 (PaV1). J Invert Pathol 94:48–55CrossRefGoogle Scholar
  27. 27.
    Luedeman R, Lightner DV (1992) Development of an in vitro primary cell culture system from the penaeid shrimp, Penaeus stylirostris and Penaeus vannamei. Aquaculture 101:205–211CrossRefGoogle Scholar
  28. 28.
    Lang G, Nomura N, Matsumura M (2002) Growth by cell division in shrimp (Penaeus japonicus) cell culture. Aquaculture 213:73–83CrossRefGoogle Scholar
  29. 29.
    Wang W, Gu W, Ding ZF, Ren YL, Chen JX et al (2005) A novel Spiroplasma pathogen causing systemic infection in the crayfish Procambarus clarkii (Crustacea : Decapod), in China. FEMS Microbiol Lett 249:131–137PubMedCrossRefGoogle Scholar
  30. 30.
    Liang TM, Feng Q, Wu T, Gu W, Wang W (2009) Use of oxytetracycline for the treatment of tremor disease in the Chinese mitten crab Eriocheir sinensis. Dis Aquat Org 84:243–250PubMedCrossRefGoogle Scholar
  31. 31.
    Li CH, Zhao JM, Song LS, Mu CK, Zhang H et al (2008) Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis. Dev Comp Immunol 32:784–794PubMedCrossRefGoogle Scholar
  32. 32.
    Holmblad T, Sderhll K (1999) Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172:111–123CrossRefGoogle Scholar
  33. 33.
    Thornqvist PO, Johansson MW, Sderhll K (1994) Opsonic activity of cell adhesion proteins and [beta]-1, 3-glucan binding proteins from two crustaceans. Dev Comp Immunol 18:3–12CrossRefGoogle Scholar
  34. 34.
    Sricharoen S, Kim JJ, Tunkijjanukij S, Sderhll I (2005) Exocytosis and proteomic analysis of the vesicle content of granular hemocytes from a crayfish. Dev Comp Immunol 29:1017–1031PubMedCrossRefGoogle Scholar
  35. 35.
    Kobayashi M, Johansson MW, Sderhll K (1990) The 76 kD cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell Tissue Res 260:13–18CrossRefGoogle Scholar
  36. 36.
    Gai YC, Qu LM, Wang LL, Song LS, Mu CK et al (2009) A clip domain serine protease (cSP) from the Chinese mitten crab Eriocheir sinensis: cDNA characterization and mRNA expression. Fish Shellfish Immunol 27:670–677PubMedCrossRefGoogle Scholar
  37. 37.
    de la Vega E, O’Leary NA, Shockey JE, Robalino J, Payne C et al (2008) Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol Immunol 45:1916–1925PubMedCrossRefGoogle Scholar
  38. 38.
    Meng QG, Li WJ, Liang TM, Jiang XJ, Gu W et al (2010) Identification of adhesin-like protein ALP41 from Spiroplasma eriocheiris and induction immune response of Eriocheir sinensis. Fish Shellfish Immunol 29:587–593PubMedCrossRefGoogle Scholar
  39. 39.
    Burge EJ, Burnett LE, Burnett KG (2009) Time-course analysis of peroxinectin mRNA in the shrimp Litopenaeus vannamei after challenge with Vibrio campbellii. Fish Shellfish Immunol 27:603–609PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tingming Liang
    • 1
    • 2
    • 3
  • Hong Ji
    • 1
    • 2
  • Jie Du
    • 1
    • 2
  • Jiangtao Ou
    • 1
    • 2
  • Wenjie Li
    • 1
    • 2
  • Ting Wu
    • 1
    • 2
    • 4
  • Qingguo Meng
    • 1
    • 2
  • Wei Gu
    • 1
    • 2
  • Wen Wang
    • 1
    • 2
  1. 1.Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life SciencesNanjing Normal UniversityNanjingChina
  3. 3.Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
  4. 4.Baoying Center for Control and Prevention of Aquatic Animal Infectious DiseaseYangzhouChina

Personalised recommendations