Skip to main content
Log in

Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB), predominantly caused by Fusarium graminearum, is a destructive disease that poses a serious threat to wheat (Triticum aestivum L.) production around the world. A suppression subtractive hybridization (SSH) cDNA library was constructed from F. graminearum infected spikes of a resistant Belgian winter wheat variety Centenaire, exhibiting Type II resistance to FHB. Forty-three differentially expressed transcripts were identified and classified in different categories according to their predicted function, including proteins involved in defense response, signaling, transport of molecules, metabolism and proteins with unknown function. Time-course gene expression analysis between the FHB resistant genotype Centenaire and the susceptible genotype Robigus was carried out on twelve selected genes in order to validate the SSH screening. Real-time quantitative polymerase chain reaction showed that the selected transcripts were differentially expressed between the resistant and the susceptible genotype at three-time points (24, 48 and 72 h) after inoculation with the pathogen, and mostly, the transcripts accumulation rates were higher in the FHB-resistant as compared to the susceptible one. Thirty identified differentially expressed loci were mapped on the corresponding wheat chromosomes either by in silico analysis or by PCR-based mapping strategy, and fifteen of these loci were located within or nearby chromosomal regions known to have quantitative trait loci for FHB resistance in winter wheat cultivars. This work emphasizes the differential gene expression between the FHB-resistant winter wheat Centenaire and the susceptible Robigus and highlights the putative genes and mechanism involved in the disease resistance reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FHB:

Fusarium head blight

Hpi:

Hours post-inoculation

DON:

Deoxynivalenol

References

  1. Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  PubMed  CAS  Google Scholar 

  2. Foroud N, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173

    Article  PubMed  CAS  Google Scholar 

  3. Boyacioglu D, Hettiarachchy N (1995) Changes in some biochemical components of wheat grain that was infected with Fusarium graminearum. J Cereal Sci 21:57–62

    Article  CAS  Google Scholar 

  4. Rocha O, Anasari K, Doohan F (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378

    Article  PubMed  CAS  Google Scholar 

  5. Brown N, Urban M, de Meene Van, Hammond-Kosack K (2010) The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonization in wheat ears. Fungal Biol 114:555–571

    Article  PubMed  Google Scholar 

  6. Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  7. Waldron B, Moreno-Sevilla B, Anderson A, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811

    Article  CAS  Google Scholar 

  8. Buerstmayr H, Lemmens M, Hartl L, Steiner B, Stierschneider M, Rukenbauer P (2002) Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Article  PubMed  CAS  Google Scholar 

  9. Zhou WC, Kolb FL, Bai G, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727

    Article  PubMed  CAS  Google Scholar 

  10. Zhou MP, Hayden MJ, Zhang ZY, Lu WZ, Ma HX (2010) Saturation and mapping of a major Fusarium head blight resistance QTL on chromosome 3BS of Sumai 3 wheat. J Appl Genet 51:19–25

    Article  PubMed  Google Scholar 

  11. Liu S, Zhang X, Pumphrey MO, Stack RW, Gill B, Anderson JA (2006) Complex microlinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  12. Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brulé-Babel A (2006) Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    Article  PubMed  CAS  Google Scholar 

  13. Liu S, Pumphrey M, Gill B, Trick H, Zhang J, Dolezel J, Chalhoub B, Anderson J (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. In: 3rd International FHB symposium book, pp 195–201

  14. Pritsch C, Muehlbauer G, Bushnell R, Somers D, Vance C (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159–169

    Article  PubMed  CAS  Google Scholar 

  15. Zhou W, Kolb FL, Riechers DE (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48:770–780

    Article  PubMed  CAS  Google Scholar 

  16. Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P (2007) Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct Integr Genomics 7:69–77

    Article  PubMed  CAS  Google Scholar 

  17. Kong L, Ohm HW, Anderson JM (2007) Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome 50:1038–1048

    Article  PubMed  CAS  Google Scholar 

  18. Golkari S, Gilbert J, Prashar S, Procunier J (2007) Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnol J 5:38–49

    Article  PubMed  CAS  Google Scholar 

  19. Golkari S, Gilbert J, Ban T, Procunier J (2009) QTL-specific microarray gene expression analysis of wheat resistance to Fusarium head blight in Sumai-3 and two susceptible NILs. Genome 52:409–418

    Article  PubMed  CAS  Google Scholar 

  20. Walter S, Brennan J, Arunachalam C, Ansari K, Hu X, Khan M, Trognitz F, Trognitz B, Leonard G, Egan D, Doohan F (2008) Components of the gene network associated with genotype-dependent response of wheat to the Fusarium mycotoxins deoxynivalenol. Funct Integr Genomics 8:421–427

    Article  PubMed  CAS  Google Scholar 

  21. Jia H, Cho S, Muehlbauer G (2009) Transcriptomic analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles. Mol Plant Microbe Interact 22:1366–1378

    Article  PubMed  CAS  Google Scholar 

  22. Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet 118:753–764

    Article  PubMed  CAS  Google Scholar 

  23. Walter S, Nicholson P, Doohan F (2010) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    Article  PubMed  CAS  Google Scholar 

  24. Ansari K, Walter S, Brennan J, Lemmens M, Kessans S, McGahern A, Egan D, Doohan F (2007) Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet 114:927–937

    Article  PubMed  CAS  Google Scholar 

  25. Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer G, Adam G (2010) Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant Microbe Interact 23:977–986

    Article  PubMed  CAS  Google Scholar 

  26. Gardiner S, Boddu J, Berthiller F, Hametner C, Stupar R, Adam G, Muehlbauer G (2010) Transcriptome analysis of the barley–deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. Mol Plant Microbe Interact 23:962–976

    Article  PubMed  CAS  Google Scholar 

  27. Anand A, Zhou T, Trick N, Gill B, Bockus W, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    Article  PubMed  CAS  Google Scholar 

  28. Shin S, Mackintosh C, Lewis J, Heinen S, Radmer L, Dill-Macky R, Baldridge G, Zeyen R, Muehlbauer G (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance to Fusarium graminearum. J Exp Bot 59:2371–2378

    Article  PubMed  CAS  Google Scholar 

  29. Makandar R, Essig J, Schapaugh M, Trick N, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129

    Article  PubMed  CAS  Google Scholar 

  30. Di R, Blechl A, Dill-Macky R, Tortora A, Tumer NE (2010) Expression of a truncated form of yeast ribosomal protein L3 in transgenic wheat improves resistance to Fusarium head blight. Plant Sci 178:374–380

    Article  CAS  Google Scholar 

  31. Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11:63–70

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5:4496–4503

    Article  PubMed  CAS  Google Scholar 

  33. Dornez E, Croes E, Gebruers K, Carpentier S, Swennen R, Laukens K, Witters E, Urban M, Delcour J, Courtin C (2010) 2-D DIGE reveals changes in wheat xylanase inhibitor protein families due to Fusarium graminearum ΔTri5 infection and grain development. Proteomics 10:2303–2319

    Article  PubMed  CAS  Google Scholar 

  34. Geddes J, Eudes F, Laroche A, Selinger B (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    Article  PubMed  CAS  Google Scholar 

  35. Mallard S, Negre S, Pouya S, Gaudet D, Lu Z, Dedryver F (2008) Adult plant resistance-related gene expression in Camp Remy wheat inoculated with Puccinia striiformis. Mol Plant Pathol 9:213–225

    Article  PubMed  CAS  Google Scholar 

  36. Han F, Fedak T, Ouellet T, Dan H, Somers D (2005) Mapping of genes expressed in Fusarium graminearum-infected heads of wheat cultivar Frontana. Genome 48:88–96

    Article  PubMed  CAS  Google Scholar 

  37. Yu X, Wang X, Wang C, Chen X, Qu Z, Yu X, Han Q, Zhao J, Guo J, Huang L, Kang Z (2010) Wheat defense genes in fungal (Puccinia striiformis) infection. Funct Integr Genomics 10:227–239

    Article  PubMed  CAS  Google Scholar 

  38. Zhang H, Hu Y, Wang C, Ji W (2011) Gene expression in wheat induced by inoculation with Puccinia striiformis. Plant Mol Biol Rep 29:458–465

    Article  Google Scholar 

  39. Diatchenko L, Chris L, Campbell A, Chenchi A, Moqadam F, Huang B, Lukyanov K, Gurskaya N, Sverdlov E, Siebert P (1996) Suppression subtractive hybridization: a method for generation differentially regulated or tissue-specific cDNA probes and libraries. Proc Nat Acad Sci 93:6025–6039

    Article  PubMed  CAS  Google Scholar 

  40. Duvick JP, Rood T, Rao AG, Marshak DR (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267:18814–18820

    PubMed  CAS  Google Scholar 

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  42. Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  43. Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellite for detecting DNA polymorphism genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  44. Liu B, Segal G, Vega MJ, Feldman M, Abbo S (1997) Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J 11:959–965

    Article  CAS  Google Scholar 

  45. Bilgic H, Cho S, Garvin DF, Muelhbauer GJ (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat–barley ditelosomic chromosome addition lines. Genome 50:898–906

    Article  PubMed  CAS  Google Scholar 

  46. Miftahudin RK, Ma XF, Mahmoud AA et al (2004) Analysis of expressed sequence tags on wheat chromosome group 4. Genetics 168:651–663

    Article  PubMed  CAS  Google Scholar 

  47. Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat. Theor Appl Genet 109:323–332

    Article  PubMed  CAS  Google Scholar 

  48. Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  PubMed  CAS  Google Scholar 

  49. Haberle J, Schmolke M, Schweizer G, Korzun V, Ebmeyer E, Zimmermann G, Hartl L (2007) Effects of two major Fusarium head blight resistance QTL verified in a winter wheat back-cross population. Crop Sci 47:1823–1831

    Article  Google Scholar 

  50. Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28

    Article  CAS  Google Scholar 

  51. Gervais L, Dedryver J, Morlais Y, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  52. Draeger R, Gosman N, Steed E, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

    Article  PubMed  CAS  Google Scholar 

  53. Semagn K, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from Arina and NK93604. Crop Sci 47:294–303

    Article  CAS  Google Scholar 

  54. Gilsinger J, Kong L, Shen X, Ohn H (2005) DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theor Appl Genet 110:1218–1225

    Article  PubMed  CAS  Google Scholar 

  55. Dangl J, Jones J (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–832

    Article  PubMed  CAS  Google Scholar 

  56. Dilbirligi M, Gill K (2003) Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53:771–787

    Article  PubMed  CAS  Google Scholar 

  57. Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009) Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9:2967–2985

    Article  PubMed  CAS  Google Scholar 

  58. Roberts RM, Salinas J, Collinge DB (2002) 14-3-3 Proteins and the response to abiotic and biotic stress. Plant Mol Biol 50:1031–1039

    Article  PubMed  CAS  Google Scholar 

  59. Sun G, Xie F, Zhang B (2011) Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton (Gossypium hirsutum L.). Funct Integr Genomics. doi:10.1007/s10142-011-0242-3

  60. Brandt J, Thordal-Christensen H, Vad K, Gregersen PL, Collinge DB (1992) A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant J 2:815–820

    PubMed  CAS  Google Scholar 

  61. Faris JD, Li WL, Liu DJ, Chen PD, Gill B (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  62. Oh CS, Martin BG (2011) Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. J Biol Chem 286:14129–14136

    Article  PubMed  CAS  Google Scholar 

  63. Campo S, Peris-Peris C, Montesions L, Penas G, Messeguer J, Segundo SB (2011) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63:983–999

    Article  PubMed  Google Scholar 

  64. Li L, He Z, Pandey G, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368

    Article  PubMed  CAS  Google Scholar 

  65. Morita M, Shitan N, Sawada K, Van Montagu M, Inze D, Rischer H, Goossens A, Oksman-Caldentey KM, Moriyama Y, Yazaki K (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci USA 106:2447–2452

    Article  PubMed  CAS  Google Scholar 

  66. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Kleina M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H1-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    Article  PubMed  CAS  Google Scholar 

  67. Maron LG, Pineros MA, Guimaraes CT, Magalhaes J, Pleiman JK, Mao C, Shaff J, Belicuas S, Kochian L (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–749

    Article  PubMed  CAS  Google Scholar 

  68. Savitch LV, Subramaniam R, Allard G, Singh J (2007) The GLK1 “regulon” encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis. Biochem Biophys Res Commun 359:234–238

    Article  PubMed  CAS  Google Scholar 

  69. Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

    Article  PubMed  CAS  Google Scholar 

  70. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defense—a genomic perspective. Mol Plant Pathol 3:371–390

    Article  PubMed  CAS  Google Scholar 

  71. Paranidharan V, Abu-Nada Y, Hamzehzarghani H, Kushalappa A, Mamer O, Dion Y, Rioux S, Comeau A, Choiniere L (2008) Resistance-related metabolites in wheat against Fusarium graminearum and the virulence factor deoxynivalenol (DON). Botany 86:1168–1179

    Article  CAS  Google Scholar 

  72. Caili B, Chen F, Jackson L, Gill B (2011) Expression of lignin biosynthetic genes in wheat during development and upon infection by fungal pathogens. Plant Mol Biol Rep 29:149–161

    Article  Google Scholar 

  73. Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260

    Article  PubMed  CAS  Google Scholar 

  74. Falk A, Feys BJ, Frost LN, Jones J, Daniels M, Parker J (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipase. Proc Natl Acad Sci USA 96:3292–3297

    Article  PubMed  CAS  Google Scholar 

  75. Jirage D, Tootle T, Reuber T, Frost L, Feys B, Parker J, Ausbel F, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Nat Acad Sci 96:13583–13588

    Article  PubMed  CAS  Google Scholar 

  76. Lu ZX, Gaudet D, Frick M, Puchalski B, Genswein B, Laroche A (2005) Identification and characterization of genes differentially expressed in the resistance reaction in wheat infected with Tilleria tritici, the common bunt pathogen. J Biochem Mol Biol 38:420–431

    Article  PubMed  CAS  Google Scholar 

  77. Oh IS, Park A, Bae M, Kwon S, Kim Y, Lee J, Kang N, Lee S, Cheong H, Park O (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  78. Lee SD, Kim B, Kwon S, Jin H, Park O (2009) Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 379:1038–1042

    Article  PubMed  CAS  Google Scholar 

  79. Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315

    Article  PubMed  CAS  Google Scholar 

  80. Kong L, Anderson JM, Ohm HW (2005) Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome 48:29–40

    Article  PubMed  CAS  Google Scholar 

  81. Cantu D, Vanzetti L, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore R, Dubcovsky J (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11:408

    Article  PubMed  Google Scholar 

  82. Kashkush K, Feldman M, Levy A (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  83. Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y (2002) Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J 31:615–627

    Article  PubMed  CAS  Google Scholar 

  84. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  85. Ha M, Ng DW, Li WH, Chen ZJ (2011) Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res 21:590–598

    Article  PubMed  CAS  Google Scholar 

  86. Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sagi L, Swennen R, Terauchi R (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Mol Plant Pathol 9:25–36

    PubMed  CAS  Google Scholar 

  87. Bhuiyan N, Liu W, Liu G, Selvaraj G, Wei Y, King G (2007) Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol Biol 64:305–318

    Article  PubMed  CAS  Google Scholar 

  88. Sun JY, Gaudet D, Lu ZX, Frick M, Puchalski B, Laroche A (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant Microbe Interact 21:346–360

    Article  PubMed  CAS  Google Scholar 

  89. Buerstmayr H, Ban T, Anderson AJ (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  90. Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  91. Zwart R, Muyelle H, Van Bockstaele E, Roldan-Ruiz I (2008) Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theor Appl Genet 117:813–828

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yordan Muhovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhovski, Y., Batoko, H. & Jacquemin, JM. Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection. Mol Biol Rep 39, 9583–9600 (2012). https://doi.org/10.1007/s11033-012-1823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1823-5

Keywords

Navigation