Advertisement

Molecular Biology Reports

, Volume 39, Issue 10, pp 9423–9433 | Cite as

Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population

  • Al-Motassem Yousef
  • Nailya R. Bulatova
  • William Newman
  • Nancy Hakooz
  • Said Ismail
  • Hisham Qusa
  • Farah Zahran
  • Nidaa Anwar Ababneh
  • Farah Hasan
  • Imad Zaloom
  • Ghada Khayat
  • Rawan Al-Zmili
  • Randa Naffa
  • Ola Al-Diab
Article

Abstract

Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16 %) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9 %) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.

Keywords

Polymorphism Genotype Alleles frequencies Jordanian population CYP450 

Notes

Acknowledgments

The authors would like to thank all who participated in the study. This study was supported in part by unconditional grant from the Deanship of Scientific Research (Jordan University, Jordan). The study sponsors had no part in the study design, data collection, data analysis, data interpretations or in the writing of the manuscript. The sponsors had no role in the decision to submit the paper for publication.

Conflict of interest

None of the authors has any financial or personal relationships that could potentially be perceived as influencing our research.

References

  1. 1.
    Weizmann Institute of Science (2011) GeneCard for protein-coding CYP1A1. http://www.genecards.org/cgi-bin/carddisp.pl?gene=CYP1A1. Accessed 5 March 2011
  2. 2.
    McManus ME, Burgess WM, Veronese ME, Huggett A, Quattrochi LC, Tukey RH (1990) Metabolism of 2-acetylaminofluorene and benzo(a)pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450. Cancer Res 50:3367–3376PubMedGoogle Scholar
  3. 3.
    Munoz S, Vollrath V, Vallejos MP, Miquel JF, Covarrubias C, Raddatz A, Chianale J (1998) Genetic polymorphisms of CYP2D6, CYP1A1 and CYP2E1 in the South-Amerindian population of Chile. Pharmacogenetics 8:343–351PubMedCrossRefGoogle Scholar
  4. 4.
    Garte S (1998) The role of ethnicity in cancer susceptibility gene polymorphisms: the example of CYP1A1. Carcinogenesis 19:1329–1332PubMedCrossRefGoogle Scholar
  5. 5.
    Quinones L, Berthou F, Varela N, Simon B, Gil L, Lucas D (1999) Ethnic susceptibility to lung cancer: differences in CYP2E1, CYP1A1 and GSTM1 genetic polymorphisms between French Caucasian and Chilean populations. Cancer Lett 141:167–171PubMedCrossRefGoogle Scholar
  6. 6.
    Shaffi SM, Shah MA, Bhat IA, Koul P, Ahmad SN, Siddiqi MA (2009) CYP1A1 polymorphisms and risk of lung cancer in the ethnic Kashmiri population. Asian Pac J Cancer Prev 10:651–656PubMedGoogle Scholar
  7. 7.
    San Jose C, Cabanillas A, Benitez J, Carrillo JA, Jimenez M, Gervasini G (2010) CYP1A1 gene polymorphisms increase lung cancer risk in a high-incidence region of Spain: a case control study. BMC Cancer 10:463PubMedCrossRefGoogle Scholar
  8. 8.
    Cosma G, Crofts F, Currie D, Wirgin I, Toniolo P, Garte SJ (1993) Racial differences in restriction fragment length polymorphisms and messenger RNA inducibility of the human CYP1A1 gene. Cancer Epidemiol Biomarkers Prev 2:53–57PubMedGoogle Scholar
  9. 9.
    Surekha D, Sailaja K, Rao DN, Padma T, Raghunadharao D, Vishnupriya S (2009) Association of CYP1A1*2 polymorphisms with breast cancer risk: a case control study. Indian J Med Sci 63:13–20PubMedCrossRefGoogle Scholar
  10. 10.
    Boyapati SM, Shu XO, Gao YT, Cai Q, Jin F, Zheng W (2005) Polymorphisms in CYP1A1 and breast carcinoma risk in a population-based case-control study of Chinese women. Cancer 103:2228–2235PubMedCrossRefGoogle Scholar
  11. 11.
    Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, Daujat M, Waechter F, Fabre JM, Carrere N, Maurel P (2001) Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 29:242–251PubMedGoogle Scholar
  12. 12.
  13. 13.
    Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, Hewett M, Lin Z, Liu Y, Liu S, Oliver DE, Rubin DL, Shafa F, Stuart JM, Altman RB (2001) Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenetics Research Network and Knowledge Base. Pharmacogenomics J 1:167–170PubMedCrossRefGoogle Scholar
  14. 14.
    Ali ZK, Kim RJ, Ysla FM (2009) CYP2C9 polymorphisms: considerations in NSAID therapy. Curr Opin Drug Discov Devel 12:108–114PubMedGoogle Scholar
  15. 15.
    Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 12:251–263PubMedCrossRefGoogle Scholar
  16. 16.
    Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538PubMedCrossRefGoogle Scholar
  17. 17.
    Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR (1996) Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 6:429–439PubMedCrossRefGoogle Scholar
  18. 18.
    Limdi N, Goldstein J, Blaisdell J, Beasley T, Rivers C, Acton R (2007) Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans. Per Med 4:157–169PubMedCrossRefGoogle Scholar
  19. 19.
    Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest CS 2nd, Lachno DR, Salazar D, Winters KJ (2007) Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 5:2429–2436PubMedCrossRefGoogle Scholar
  20. 20.
    Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, Goldstein JA (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6:341–349PubMedCrossRefGoogle Scholar
  21. 21.
    London SJ, Daly AK, Leathart JB, Navidi WC, Idle JR (1996) Lung cancer risk in relation to the CYP2C9*1/CYP2C9*2 genetic polymorphism among African-Americans and Caucasians in Los Angeles County, California. Pharmacogenetics 6:527–533PubMedCrossRefGoogle Scholar
  22. 22.
    Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F (1999) Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 254:628–631PubMedCrossRefGoogle Scholar
  23. 23.
    Nasu K, Kubota T, Ishizaki T (1997) Genetic analysis of CYP2C9 polymorphism in a Japanese population. Pharmacogenetics 7:405–409PubMedCrossRefGoogle Scholar
  24. 24.
    Wang SL, Huang J, Lai MD, Tsai JJ (1995) Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 5:37–42PubMedCrossRefGoogle Scholar
  25. 25.
    Klotz U (2006) Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors: a review of a special problem. Int J Clin Pharmacol Ther 44:297–302PubMedGoogle Scholar
  26. 26.
    Fukasawa T, Suzuki A, Otani K (2007) Effects of genetic polymorphism of cytochrome P450 enzymes on the pharmacokinetics of benzodiazepines. J Clin Pharm Ther 32:333–341PubMedCrossRefGoogle Scholar
  27. 27.
    de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422PubMedGoogle Scholar
  28. 28.
    De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598PubMedGoogle Scholar
  29. 29.
    Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, Deglmann CJ, Burk O, Buntefuss D, Escher S, Bishop C, Koebe HG, Brinkmann U, Klenk HP, Kleine K, Meyer UA, Wojnowski L (2001) Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 11:111–121PubMedCrossRefGoogle Scholar
  30. 30.
    Lamba JK, Lin YS, Schuetz EG, Thummel KE (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54:1271–1294PubMedCrossRefGoogle Scholar
  31. 31.
    Gibson GG, Plant NJ, Swales KE, Ayrton A, El-Sankary W (2002) Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 32:165–206PubMedCrossRefGoogle Scholar
  32. 32.
    Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L, Kashuba AD (2000) Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 10:373–388PubMedCrossRefGoogle Scholar
  33. 33.
    Lakhman SS, Ma Q, Morse GD (2009) Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics 10:1323–1339PubMedCrossRefGoogle Scholar
  34. 34.
    Wrighton SA, Brian WR, Sari MA, Iwasaki M, Guengerich FP, Raucy JL, Molowa DT, Vandenbranden M (1990) Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 38:207–213PubMedGoogle Scholar
  35. 35.
    Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmoller J, Halpert JR, Zanger UM, Wojnowski L (2001) The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11:773–779PubMedCrossRefGoogle Scholar
  36. 36.
    Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27:383–391PubMedCrossRefGoogle Scholar
  37. 37.
    Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P, Legendre C, Daly AK (2003) Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 76:1233–1235PubMedCrossRefGoogle Scholar
  38. 38.
    Zheng H, Webber S, Zeevi A, Schuetz E, Zhang J, Bowman P, Boyle G, Law Y, Miller S, Lamba J, Burckart GJ (2003) Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 3:477–483PubMedCrossRefGoogle Scholar
  39. 39.
    Lowi MR (1995) Water and power: the politics of a scarce resource in the Jordan River basin. Cambridge University Press, CambridgeGoogle Scholar
  40. 40.
    Central Intelligence Agency (2012) The World Factbook. https://www.cia.gov/library/publications/the-world-factbook/fields/2075.html. Accessed 18 Feb 2012
  41. 41.
    The Royal Hashemite Court Keys to the Kingdom—The People of Jordan. http://www.kinghussein.gov.jo/people.html. Accessed 18 Feb 2012
  42. 42.
    Brooker R (ed) (2005) Genetics, analysis and principles, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  43. 43.
    Graph Pad Software Inc http://www.graphpad.com/quickcalcs/chisquared1.cfm. Accessed 20 February 2011
  44. 44.
    Sanford B (1990) Pharmaceutical statistics: practical and clinical application. Marcel Dekker, Inc., New YorkGoogle Scholar
  45. 45.
    Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, Baranova H, Bathum L, Benhamou S, Boffetta P, Bouchardy C, Breskvar K, Brockmoller J, Cascorbi I, Clapper ML, Coutelle C, Daly A, Dell’Omo M, Dolzan V, Dresler CM, Fryer A, Haugen A, Hein DW, Hildesheim A, Hirvonen A, Hsieh LL, Ingelman-Sundberg M, Kalina I, Kang D, Kihara M, Kiyohara C, Kremers P, Lazarus P, Le Marchand L, Lechner MC, van Lieshout EM, London S, Manni JJ, Maugard CM, Morita S, Nazar-Stewart V, Noda K, Oda Y, Parl FF, Pastorelli R, Persson I, Peters WH, Rannug A, Rebbeck T, Risch A, Roelandt L, Romkes M, Ryberg D, Salagovic J, Schoket B, Seidegard J, Shields PG, Sim E, Sinnet D, Strange RC, Stucker I, Sugimura H, To-Figueras J, Vineis P, Yu MC, Taioli E (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248PubMedGoogle Scholar
  46. 46.
    Cascorbi I, Brockmoller J, Roots I (1996) A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res 56:4965–4969PubMedGoogle Scholar
  47. 47.
    Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J (1990) Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 263:131–133PubMedCrossRefGoogle Scholar
  48. 48.
    Mrozikiewicz PM, Cascorbi I, Brockmoller J, Roots I (1997) CYP1A1 mutations 4887A, 4889G, 5639C and 6235C in the Polish population and their allelic linkage, determined by peptide nucleic acid-mediated PCR clamping. Pharmacogenetics 7:303–307PubMedCrossRefGoogle Scholar
  49. 49.
    Nakachi K, Imai K, Hayashi S, Watanabe J, Kawajiri K (1991) Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res 51:5177–5180PubMedGoogle Scholar
  50. 50.
    Drakoulis N, Cascorbi I, Brockmoller J, Gross CR, Roots I (1994) Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889 A to G), and a T to C mutation in the 3′-flanking region. Clin Investig 72:240–248PubMedCrossRefGoogle Scholar
  51. 51.
    Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS, Mizugaki M (2002) Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol 53:596–603PubMedCrossRefGoogle Scholar
  52. 52.
    Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S (1998) Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 20:243–247PubMedCrossRefGoogle Scholar
  53. 53.
    Yoon YR, Shon JH, Kim MK, Lim YC, Lee HR, Park JY, Cha IJ, Shin JG (2001) Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol 51:277–280PubMedCrossRefGoogle Scholar
  54. 54.
    Marin-Leblanc M, Perreault S, Bahroun I, Lapointe M, Mongrain I, Provost S, Turgeon J, Talajic M, Brugada R, Phillips M, Tardif JC, Dube MP (2012) Validation of warfarin pharmacogenetic algorithms in clinical practice. Pharmacogenomics 13:21–29PubMedCrossRefGoogle Scholar
  55. 55.
    Tan GM, Wu E, Lam YY, Yan BP (2010) Role of warfarin pharmacogenetic testing in clinical practice. Pharmacogenomics 11:439–448PubMedCrossRefGoogle Scholar
  56. 56.
    Goldstein JA, Ishizaki T, Chiba K, de Morais SM, Bell D, Krahn PM, Evans DA (1997) Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7:59–64PubMedCrossRefGoogle Scholar
  57. 57.
    Perry E (2011) Clopidogrel hyporesponsiveness and the FDA boxed warning: detection and management of patients with genetic polymorphisms. Am J Health Syst Pharm 68:529–532PubMedCrossRefGoogle Scholar
  58. 58.
    Shi WX, Chen SQ (2004) Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer, stomach cancer, lung cancer and bladder cancer in Chinese population. World J Gastroenterol 10:1961–1963PubMedGoogle Scholar
  59. 59.
    Bartsch H, Nair U, Risch A, Rojas M, Wikman H, Alexandrov K (2000) Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev 9:3–28PubMedGoogle Scholar
  60. 60.
    Rodriguez-Antona C, Sayi JG, Gustafsson LL, Bertilsson L, Ingelman-Sundberg M (2005) Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles. Biochem Biophys Res Commun 338:299–305PubMedCrossRefGoogle Scholar
  61. 61.
    Dawood A (2007) Polymorphisms of cytochrome P450 xenobiotic-metabolizing enzymes cyp2D6 and cyp3A4*1B and susceptability to atherosclerosis. In: Analytical toxicology science. University of Jordan, Amman, p 74Google Scholar
  62. 62.
    Walker AH, Jaffe JM, Gunasegaram S, Cummings SA, Huang CS, Chern HD, Olopade OI, Weber BL, Rebbeck TR (1998) Characterization of an allelic variant in the nifedipine-specific element of CYP3A4: ethnic distribution and implications for prostate cancer risk. Mutations in brief no. 191. Online. Hum Mutat 12:289PubMedGoogle Scholar
  63. 63.
    Kittles RA, Chen W, Panguluri RK, Ahaghotu C, Jackson A, Adebamowo CA, Griffin R, Williams T, Ukoli F, Adams-Campbell L, Kwagyan J, Isaacs W, Freeman V, Dunston GM (2002) CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification? Hum Genet 110:553–560PubMedCrossRefGoogle Scholar
  64. 64.
    Bolufer P, Collado M, Barragan E, Calasanz MJ, Colomer D, Tormo M, Gonzalez M, Brunet S, Batlle M, Cervera J, Sanz MA (2007) Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol 136:590–596PubMedCrossRefGoogle Scholar
  65. 65.
    Spurdle AB, Goodwin B, Hodgson E, Hopper JL, Chen X, Purdie DM, McCredie MR, Giles GG, Chenevix-Trench G, Liddle C (2002) The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 12:355–366PubMedCrossRefGoogle Scholar
  66. 66.
    Dally H, Edler L, Jager B, Schmezer P, Spiegelhalder B, Dienemann H, Drings P, Schulz V, Kayser K, Bartsch H, Risch A (2003) The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 13:607–618PubMedCrossRefGoogle Scholar
  67. 67.
    van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48:1668–1671PubMedGoogle Scholar
  68. 68.
    Hardy GH (1908) Mendelian proportions in a mixed population. Science 28:49–50PubMedCrossRefGoogle Scholar
  69. 69.
    Rodriguez S, Gaunt TR, Day IN (2009) Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol 169:505–514PubMedCrossRefGoogle Scholar
  70. 70.
    Gonzalez AM, Karadsheh N, Maca-Meyer N, Flores C, Cabrera VM, Larruga JM (2008) Mitochondrial DNA variation in Jordanians and their genetic relationship to other Middle East populations. Ann Hum Biol 35:212–231PubMedCrossRefGoogle Scholar
  71. 71.
    London SJ, Smart J, Daly AK (2000) Lung cancer risk in relation to genetic polymorphisms of microsomal epoxide hydrolase among African-Americans and Caucasians in Los Angeles County. Lung Cancer 28:147–155PubMedCrossRefGoogle Scholar
  72. 72.
    Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA (1998) Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19:275–280PubMedCrossRefGoogle Scholar
  73. 73.
    Weber WW (1999) Populations and genetic polymorphisms. Mol Diagn 4:299–307PubMedCrossRefGoogle Scholar
  74. 74.
    Aynacioglu AS, Cascorbi I, Mrozikiewicz PM, Roots I (1998) High frequency of CYP1A1 mutations in a Turkish population. Arch Toxicol 72:215–218PubMedCrossRefGoogle Scholar
  75. 75.
    Song N, Tan W, Xing D, Lin D (2001) CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis 22:11–16PubMedCrossRefGoogle Scholar
  76. 76.
    Taioli E, Ford J, Trachman J, Li Y, Demopoulos R, Garte S (1998) Lung cancer risk and CYP1A1 genotype in African Americans. Carcinogenesis 19:813–817PubMedCrossRefGoogle Scholar
  77. 77.
    Burian M, Grosch S, Tegeder I, Geisslinger G (2002) Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. Br J Clin Pharmacol 54:518–521PubMedCrossRefGoogle Scholar
  78. 78.
    Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M (2001) Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 52:447–450PubMedCrossRefGoogle Scholar
  79. 79.
    Zand N, Tajik N, Moghaddam AS, Milanian I (2007) Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population. Clin Exp Pharmacol Physiol 34:102–105PubMedCrossRefGoogle Scholar
  80. 80.
    Kudzi W, Dodoo AN, Mills JJ (2009) Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet 10:124PubMedCrossRefGoogle Scholar
  81. 81.
    Celebi A, Kocaman O, Savli H, Aygun C, Konduk BT, Senturk O, Hulagu S (2009) The prevalence of CYP2C19 mutations in Turkish patients with dyspepsia. Turk J Gastroenterol 20:161–164PubMedGoogle Scholar
  82. 82.
    Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, Manolopoulos VG (2007) Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol 21:419–426PubMedCrossRefGoogle Scholar
  83. 83.
    Djaffar Jureidini I, Chamseddine N, Keleshian S, Naoufal R, Zahed L, Hakime N (2011) Prevalence of CYP2C19 polymorphisms in the Lebanese population. Mol Biol Rep 38:5449–5452PubMedCrossRefGoogle Scholar
  84. 84.
    Sameer AE, Amany GM, Abdela AA, Fadel SA (2009) CYP2C19 genotypes in a population of healthy volunteers and in children with hematological malignancies in Gaza Strip. Can J Clin Pharmacol 16:e156–e162PubMedGoogle Scholar
  85. 85.
    Garsa AA, McLeod HL, Marsh S (2005) CYP3A4 and CYP3A5 genotyping by Pyrosequencing. BMC Med Genet 6:19PubMedCrossRefGoogle Scholar
  86. 86.
    Sayütoúlu MA, Yildiz I, Hatirnaz O, Ozbek U (2006) Common Cytochrome p4503A (CYP3A4 and CYP3A5) and Thiopurine S-Methyl Transferase (TPMT) Polymorphisms In Turkish Population. Turkish Journal of Medical Sciences. 36:11–15Google Scholar
  87. 87.
    Gervasini G, Vizcaino S, Gasiba C, Carrillo JA, Benitez J (2005) Differences in CYP3A5*3 genotype distribution and combinations with other polymorphisms between Spaniards and Other Caucasian populations. Ther Drug Monit 27:819–821PubMedCrossRefGoogle Scholar
  88. 88.
    Veiga MI, Asimus S, Ferreira PE, Martins JP, Cavaco I, Ribeiro V, Hai TN, Petzold MG, Bjorkman A, Ashton M, Gil JP (2009) Pharmacogenomics of CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and MDR1 in Vietnam. Eur J Clin Pharmacol 65:355–363PubMedCrossRefGoogle Scholar
  89. 89.
    Kudzi W, Dodoo AN, Mills JJ (2010) Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans? BMC Med Genet 11:111PubMedCrossRefGoogle Scholar
  90. 90.
    Quaranta S, Chevalier D, Allorge D, Lo-Guidice JM, Migot-Nabias F, Kenani A, Imbenotte M, Broly F, Lacarelle B, Lhermitte M (2006) Ethnic differences in the distribution of CYP3A5 gene polymorphisms. Xenobiotica 36:1191–1200PubMedCrossRefGoogle Scholar
  91. 91.
    Hiratsuka M, Takekuma Y, Endo N, Narahara K, Hamdy SI, Kishikawa Y, Matsuura M, Agatsuma Y, Inoue T, Mizugaki M (2002) Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur J Clin Pharmacol 58:417–421PubMedCrossRefGoogle Scholar
  92. 92.
    Park SY, Kang YS, Jeong MS, Yoon HK, Han KO (2008) Frequencies of CYP3A5 genotypes and haplotypes in a Korean population. J Clin Pharm Ther 33:61–65PubMedCrossRefGoogle Scholar
  93. 93.
    Balram C, Zhou Q, Cheung YB, Lee EJ (2003) CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol 59:123–126PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Al-Motassem Yousef
    • 1
  • Nailya R. Bulatova
    • 1
  • William Newman
    • 2
  • Nancy Hakooz
    • 1
  • Said Ismail
    • 3
  • Hisham Qusa
    • 1
  • Farah Zahran
    • 1
  • Nidaa Anwar Ababneh
    • 3
  • Farah Hasan
    • 1
  • Imad Zaloom
    • 1
  • Ghada Khayat
    • 1
  • Rawan Al-Zmili
    • 1
  • Randa Naffa
    • 3
  • Ola Al-Diab
    • 1
  1. 1.Department of Biopharmaceutics and Clinical Pharmacy, Faculty of PharmacyThe University of JordanAmmanJordan
  2. 2.School of MedicineUniversity of ManchesterManchesterUK
  3. 3.Molecular Biology Research Laboratory, Department of Biochemistry, Faculty of MedicineUniversity of JordanAmmanJordan

Personalised recommendations