Skip to main content
Log in

Changes in physiology and protein abundance in salt-stressed wheat chloroplasts

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Leaves are the final site of salinity perception through the roots. To better understand how wheat chloroplasts proteins respond to salt stress, the study aimed to the physiochemical and comparative proteomics analysis. Seedlings (12-days-old) were exposed to 150 mM NaCl for 1, 2, or 3 days. Na+ ions were rapid and excessively increase in roots, stems and leaves. Photosynthesis and transpiration rate, stomatal conductance, and relative water content decreased whereas the level of proline increased. Statistically significant positive correlations were found among the content of hydrogen peroxide, activity of catalase, and superoxide dismutase under salt stress in wheat. Protein abundance within the chloroplasts was examined by two-dimensional electrophoresis. More than 100 protein spots were reproducibly detected on each gel, 21 protein spots were differentially expressed during salt treatment. Using linear quadruple trap-Fourier transform ion cyclotron resonance (LTQ-FTICR) hybrid mass spectrometry, 65 unique proteins assigned in the differentially abundant spots. Most proteins were up-regulated at 2 and 3 days after being down-regulated at 1 day. Others showed only slight responses after 3 days of treatment, including Rubisco, glutamate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase, photosystem I, and pyridoxal biosynthesis protein PDX1.2 and PDX1.3. The ATP synthase (α, β, and γ) and V-type proton ATPase subunits were down-regulated resulting showed negative impact by Na+ on the photosynthetic machinery. This ephemeral increase and subsequent decrease in protein contents may demonstrate a counterbalancing influence of identified proteins. Several proteins such as cytochrome b6–f (Cyt b6–f), germin-like-protein, the γ-subunit of ATP synthase, glutamine synthetase, fructose-bisphosphate aldolase, S-adenosylmethionine synthase, carbonic anhydrase were gradually up-regulated during the period of treatment, which can be identified as marker proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAT:

Catalase

SOD:

Superoxide dismutase

LTQ:

Linear quadruple trap

FT:

Fourier transform

ICR:

Ion cyclotron resonance

References

  1. Quesada V, García-Martínez S, Piqueras P, Pone MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis thaliana. Plant Physiol 130:951–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenzweig C, Hillel D (2000) Soils and global climate change: challenges and opportunities. Soil Sci 165:47–56

    Article  CAS  Google Scholar 

  3. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources. University of New South Wales Press, Ltd., Canberra

    Google Scholar 

  4. Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muñoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42

    Article  PubMed  Google Scholar 

  6. Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  PubMed  Google Scholar 

  7. Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391:81–90

    Article  Google Scholar 

  8. Jellouli N, Jouira HB, Daldoul S, Chenennaoui S, Ghorbel A, Salem AB, Gargouri A (2010) Proteomic and transcriptomic analysis of grapevine PR10 expression during salt stress and functional characterization in yeast. Plant Mol Biol Rep 28:1–8

    Article  CAS  Google Scholar 

  9. Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  CAS  PubMed  Google Scholar 

  10. Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91–98

    Article  CAS  PubMed  Google Scholar 

  11. Razavizadeh R, Ehsanpour AA, Ahsan N, Komatsu S (2009) Proteome analysis of tobacco leaves under salt stress. Peptides 30:1651–1659

    Article  CAS  PubMed  Google Scholar 

  12. Zörb C, Herbst R, Forreiter C, Schubert S (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9:4209–4220

    Article  PubMed  Google Scholar 

  13. Chen M, Shen WB, Ruan HH, Xu LL (2004) Effects of nitric oxide on root growth and its oxidative damage in wheat seedling under salt stress. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30:569–576 (article in Chinese)

    CAS  PubMed  Google Scholar 

  14. Yang Y, Xu S, An L, Chen N (2007) NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J Plant Physiol 164:1429–1435

    Article  CAS  PubMed  Google Scholar 

  15. Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82:772–776

    Article  CAS  PubMed  Google Scholar 

  16. Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    Article  CAS  PubMed  Google Scholar 

  17. Agrawal GK, Jwa NS, Rakwal R (2009) Rice proteomics: ending phase I and the beginning of phase II. Proteomics 9:935–963

    Article  CAS  PubMed  Google Scholar 

  18. Finnie C, Svensson B (2009) Barley seed proteomics from spots to structures. J Proteomics 72:315–324

    Article  CAS  PubMed  Google Scholar 

  19. Blomqvist LA, Ryberg M, Sundqvist C (2006) Proteomic analysis of the etioplast inner membranes of wheat (Triticum aestivum) by two-dimensional electrophoresis and mass spectrometry. Physiol Plant 128:368–381

    Article  CAS  Google Scholar 

  20. Blomqvist LA, Ryberg M, Sundqvist C (2008) Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynth Res 96:37–50

    Article  CAS  PubMed  Google Scholar 

  21. Komatsu S, Ahsan N (2009) Soybean proteomics and its application to functional analysis. J Proteomics 72:325–336

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka N, Fujita M, Handa H, Murayama S, Uemura M, Kawamura Y, Mitsui T, Mikami S, Tozawa Y, Yoshinaga T, Komatsu S (2004) Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Mol Genet Genomics 271:566–576

    Article  CAS  PubMed  Google Scholar 

  23. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–425

    Article  Google Scholar 

  24. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents; verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  25. Bates L, Waldren RP, Tear IP (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  26. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH (2004) Anthraquinones production, hydrogen peroxide level and antioxidant vitamins in Morinda elliptica cell suspension cultures from intermediary and production medium strategies. Plant Cell Rep 22:951–958

    Article  CAS  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  28. Baque MA, Lee EJ, Paek KY (2010) Medium salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morinda citrifolia: the role of antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Rep 29:685–694

    Article  Google Scholar 

  29. Wu CH, Tewari RK, Hahn EJ, Paek KY (2007) Nitric oxide elicitation induces the accumulation of secondary metabolites and antioxidant defense in adventitious roots of Echinacea purpurea. J Plant Biol 50:636–643

    Article  CAS  Google Scholar 

  30. Baque MA, Hahn EJ, Paek KY (2010) Induction mechanism of adventitious root from leaf explants of Morinda citrifolia as affected by auxin and light quality. In Vitro Cell Dev Biol Plant 46:71–80

    Article  CAS  Google Scholar 

  31. Kamal AH, Cho K, Komatsu S, Uozumi N, Choi JS, Woo SH (2011) Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome. Mol Biol Rep. doi:10.1007/s11033-011-1302-4

    PubMed  Google Scholar 

  32. Kim KH, Kamal AHM, Shin KH, Choi JS, Heo HY, Woo SH (2010) Large-scale proteome investigation in wild relatives (A, B and D genomes) of wheat. Acta Biochim Biophys Sin 42:709–716

    Article  CAS  PubMed  Google Scholar 

  33. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  34. Kim JY, Lee JH, Park GW, Cho K, Kwon KH, Park YM, Cho SY, Paik YK, Yoo JS (2005) Utility of electrophoretically derived protein mass estimates as additional constraints in proteome analysis of human serum based on MS/MS analysis. Proteomics 5:3376–3385

    Article  CAS  PubMed  Google Scholar 

  35. González L, González-Vilar M (2001) Determination of relative water content. In: Roger MJR (ed), Handbook of plant ecophysiology techniques, 1st edn. Kluwer Academic Publishers, Netherland, pp 207–212

  36. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  37. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  38. Allen GJ, Amtmann A, Sanders D (1998) Calcium- dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles. J Exp Bot 49:305–318

    Article  Google Scholar 

  39. Solymosi K, Bertrand M (2011) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev. doi:10.1007/s13593-011-0019-z

    Google Scholar 

  40. Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287

    Article  PubMed  Google Scholar 

  41. Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632

    Article  CAS  Google Scholar 

  42. Kinraide TB (1999) Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot 50:1495–1505

    Article  CAS  Google Scholar 

  43. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El-Shintinawy F (2000) Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica 38:615–620

    Article  CAS  Google Scholar 

  45. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  46. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258. doi:10.1016/j.pbi.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  47. Abdelkader AF, Aronsson H, Solymosi K, Böddi B, Sundqvist C (2007) High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation. J Exp Bot 58:2553–2564

    Article  CAS  PubMed  Google Scholar 

  48. Dionisio-Sese ML, Tobita S (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J Plant Physiol 157:54–58

    Article  CAS  Google Scholar 

  49. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  50. Poustini K, Siosemardeh A, Ranjbar M (2007) Proline accumulation as a response to salt stress in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Genet Resour Crop Evol 54:925–934

    Article  CAS  Google Scholar 

  51. van Heerden PDR, Kruger GHJ (2002) Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J Plant Physiol 159:1077–1086

    Article  Google Scholar 

  52. Sharp RE, Hsiao TC, Silk WK (1990) Growth of maize primary root at low water potentials. Plant Physiol 93:1337–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ehsanpour AA, Fatahian N (2003) Effect of salt and proline on Medicago sativa callus. Plant Cell Tissue Organ Cult 73:53–56

    Article  CAS  Google Scholar 

  54. Zhang J, Kirkham MB (1994) Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  55. Kingston-Smith CAH, Foyer H (2000) Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in sensitive maize leaves exposed to paraquat or low temperatures. J Exp Bot 51:123–130

    Article  CAS  PubMed  Google Scholar 

  56. Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:585–587

    Article  Google Scholar 

  58. Sanders M, Shipkova PA, Zhang H, Warrack BM (2006) Utility of the hybrid LTQ-FTMS for drug metabolism applications. Curr Drug Metab 7:547–555

    Article  CAS  PubMed  Google Scholar 

  59. Yates NA, Deyanova EG, Geissler W, Wiener MC, Sachs JR, Wong KK, Thornberry NA, Roy RS, Settlage RE, Hendrickson RC (2007) Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry. Int J Mass Spectrom 259:174–183

    Article  CAS  Google Scholar 

  60. Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 57:3591–3607

    Article  Google Scholar 

  61. Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  CAS  PubMed  Google Scholar 

  62. Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196

    Article  CAS  PubMed  Google Scholar 

  63. Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteome analysis provides new insights into chilling stress response in rice. Mol Cell Proteomics 5:235–244

    Article  Google Scholar 

  64. Baginsky S, Gruissem W (2002) Endonucleolytic activation directs dark-induced chloroplast mRNA degradation. Nucleic Acids Res 30:4527–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Trebitsh T, Danon A (2001) Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I. Proc Natl Acad Sci USA 98:12289–12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nishikawa M, Hashida M, Takakura Y (2009) Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev 61:319–326

    Article  CAS  PubMed  Google Scholar 

  67. Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  69. Burks EA, Bezerra PP, Le H, Gallie DR, Browning KS (2001) Plant initiation factor 3 subunit composition resembles mammalian initiation factor 3 and has a novel subunit. J Biol Chem 276:2122–2131

    Article  CAS  PubMed  Google Scholar 

  70. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76:199–219

    Article  Google Scholar 

  71. Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43:828–835

    Article  CAS  PubMed  Google Scholar 

  72. Ueda A, Kathiresan A, Bennett J, Takabe T (2006) Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet 112:1286–1294

    Article  CAS  PubMed  Google Scholar 

  73. Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  74. Cushman JC (1993) Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during Crassulacean acid metabolism induction by salt stress. Photosynth Res 35:15–27

    Article  CAS  PubMed  Google Scholar 

  75. Palmgren MG, Harper JF (1999) Pumping with plant P-type ATPases. J Exp Bot 50:883–893

    Article  CAS  Google Scholar 

  76. Mansour MMF, Salama KHA, Al-Mutawa MM (2003) Transport proteins and salt tolerance in plants. Plant Sci 164:891–900

    Article  CAS  Google Scholar 

  77. Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Chandra Obul Reddy P, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641

    Article  CAS  Google Scholar 

  78. Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  PubMed  Google Scholar 

  79. Hodges M, Flesch V, Gálvez S, Bismuth E (2003) Higher plant NADP dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. Plant Physiol Biochem 41:577–585

    Article  CAS  Google Scholar 

  80. Soussi M, Ocaña A, Lluch C (1998) Effect of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot 325:1329–1337

    Article  Google Scholar 

  81. Schafleitner R, Wilhelm E (2002) Isolation of wound-responsive genes from chestnut (Castanea sativa) microstems by mRNA display and their differential expression upon wounding and infection with the chestnut blight fungus (Chryphonectria parasitica). Physiol Mol Plant Pathol 61:339–348

    Article  CAS  Google Scholar 

  82. Woo EJ, Dunwe JM, Goodenough PW, Marvier AC, Pickersgill RW (2000) Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol 7:1036–1040

    Article  CAS  PubMed  Google Scholar 

  83. Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    Article  CAS  PubMed  Google Scholar 

  84. Siggaard-Andersen M, Kauppinen S, von Wettstein-Knowles P (1991) Primary structure of a cerulenin-binding β-ketoacyl-[acyl carrier protein] synthase from barley chloroplasts. Proc Natl Acad Sci USA 88:4114–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hacisalihoglu G, Hart JJ, Wang YH, Cakmak I, Kochian LV (2003) Zinc efficiency is correlated with enhanced expression and activity of Cu/Zn superoxide dismutase and carbonic anhydrase in wheat. Plant Physiol 131:595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wood AJ, Davies E (1994) A cDNA encoding chalcone isomerase from aged pea epicotyls. Plant Physiol 104:1465–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Youssefian S, Nakamura M, Sano H (1993) Tobacco plants transformed with the O-acetylserine (thiol) lyase gene of wheat are resistant to toxic levels of hydrogen sulphide gas. Plant J 4:759–769

    Article  CAS  PubMed  Google Scholar 

  88. Zhou S, Sauve R (2009) Salt-induced and salt-suppressed proteins in tomato leaves. J Am Soc Hortic Sci 134:289–294

    Google Scholar 

  89. Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482

    Article  CAS  PubMed  Google Scholar 

  91. Jambunathan N, Mahalingam R (2006) Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a Nudix hydrolase during oxidative signaling. Planta 224:1–11

    Article  CAS  PubMed  Google Scholar 

  92. McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143

    Article  CAS  PubMed  Google Scholar 

  93. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  94. Mock HP, Grimm B (1997) Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetra-pyrrole biosynthesis and leads to light dependent necrosis. Plant Physiol 113:1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zang X, Komatsu S (2007) A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68:426–437

    Article  CAS  PubMed  Google Scholar 

  96. Vij S, Tyagi AK (2006) Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics 276:565–575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Kee-Yoeup Paek of the Dept. of Horticultural Science, Chungbuk National University, Korea, for conducting the LI-6400XT portable photosynthesis system. Financial support for this study was obtained from the project fund (PJ906953), Korea to S. H. Woo, and the project fund (C32730) to J.S. Choi from the Center for Analytical Research of Disaster Science of Korea Basic Science Institute, and also technically supported by the Korea Basic Science Institute Research Grant (G32121) to Kun Cho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Hee Woo.

Additional information

A. H. M. Kamal and K. Cho have contributed equally to this article.

S. H. Woo and C.-S. Shin contributed equally as corresponding author to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamal, A.H.M., Cho, K., Kim, DE. et al. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 39, 9059–9074 (2012). https://doi.org/10.1007/s11033-012-1777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1777-7

Keywords

Navigation