Skip to main content
Log in

Comparative proteomic and phosphoproteomic analysis of the silkworm (Bombyx mori) posterior silk gland under high temperature treatment

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The proteins from the posterior silk gland of silkworm hybrids and their parents reared under high temperatures were studied by using comparative proteomic and phosphoproteomic analysis. A total of 82.07, 6.17 and 11.76 % protein spots showed additivity, overdominance and underdominance patterns, respectively. Fifteen differentially expressed protein spots were identified by peptide mass fingerprinting. Among these, four spots, including sHSPs and prohibitin protein that were directly relevant to heat response, were identified. Eleven protein spots were found to play an important role in silk synthesis, and nine protein spots expressed phosphorylation states. According to Gene ontology and KEGG pathway analysis, these nine spots played an important role in stress-induced signal transduction. Expression of most silk synthesis-related proteins was reduced, whereas stress-responsive proteins increased with heat exposure time in three breeds. Furthermore, most proteins showed under- or overdominance in the hybrids compared to the parents. The results suggested that high temperature could alter the expression of proteins related to silk synthesis and heat response in silkworm. Moreover, differentially expressed proteins occurring in the hybrid and its parents may be the main explanation of the observed heterosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

MS:

Mass spectrum

QB:

Qiufeng × Baiyu

Q:

Qiufeng

B:

Baiyu

ADK:

Adenosine kinase

EF:

Elongation factor

GO:

Gene ontology

References

  1. Aruga H, Tanaka S (1968) Effect of high temperature on the resistance of silkworm, Bombyx mori L., to flacherie-virus disease. J Sericult Sci Jpn 37:441–444

    Google Scholar 

  2. Beretta L, Dubois M, Sobel A, Bensaude O (1995) Stathmin is a major substrate for MAP-kinase activated during heat-shock and chemical stress in HeLa cells. Eur J Biochem 227:388–395

    Article  PubMed  CAS  Google Scholar 

  3. Bhargava S, Majumdar M, Datta R (1995) Combining ability of seven silk technological characters in mulberry silkworm, Bombyx mori. Ital J Zool 62:359–362

    Google Scholar 

  4. Chen WQ, Priewalder H, Pradeep John JP, Lubec G (2010) Silk cocoon of Bombyx mori: proteins and posttranslational modifications heavy phosphorylation and evidence for lysine-mediated cross links. Proteomics 10:369–379

    Article  PubMed  CAS  Google Scholar 

  5. Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:477–487

    Google Scholar 

  6. de la Fuente van Bentem S, Hirt H (2007) Using phosphoproteomics to reveal signalling dynamics in plants. Trends Plant Sci 12:404–411

    Article  PubMed  Google Scholar 

  7. Engström M, Loseva O, Theopold U (2004) Proteomics of the Drosophila immune response. Trend Biotechnol 22:600–605

    Article  Google Scholar 

  8. Gorg A, Weiss W, Dunn M (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685

    Article  PubMed  Google Scholar 

  9. Goldsmith MR (1995) Genetics of the silkworm: revisiting an ancient model system. In: Goldsmith MR, Wilkins AS (eds) Molecular model systems in the lepidoptera. Cambridge University Press, New York, pp 21–76

    Chapter  Google Scholar 

  10. Hightower L (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    Article  PubMed  CAS  Google Scholar 

  11. Hossein Hosseini Moghaddam S, Du X, Li J, Cao J, Zhong B, Chen Y (2008) Proteome analysis on differentially expressed proteins of the fat body of two silkworm breeds, Bombyx mori, exposed to heat shock exposure. Biotechnol Bioprocess Eng 13:624–631

    Article  Google Scholar 

  12. Kalume D, Molina H, Pandey A (2003) Tackling the phosphoproteome: tools and strategies. Curr Opin Chem Biol 7:64–69

    Article  PubMed  CAS  Google Scholar 

  13. Kamiie K, Taira H, Kobayashi K, Yamashita T, Kidou S, Ejiri S (1999) Expression of elongation factor 1β’ in Escherichia coli and its interaction with elongation factor 1α from silk gland. Biosci Biotechnol Biochem 63:666–671

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi M, Inagaki S, Kawase S (1981) Effect of high temperature on the development of nuclear polyhedrosis virus in the silkworm, Bombyx mori. J Invertebr Pathol 38:386–394

    Article  Google Scholar 

  15. Krieg A (1987) Diseases caused by bacteria and other prokaryotes. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases., 8John Wiley and Sons, New York, pp 323–355

    Google Scholar 

  16. Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  Google Scholar 

  17. Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158:1755–1771

    PubMed  CAS  Google Scholar 

  18. Marklund U, Brattsand G, Osterman O, Ohlsson P, Gullberg M (1993) Multiple signal transduction pathways induce phosphorylation of serines 16, 25, and 38 of oncoprotein 18 in T lymphocytes. J Biol Chem 268:25671–25680

    PubMed  CAS  Google Scholar 

  19. Morimoto R (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  PubMed  CAS  Google Scholar 

  20. Nagaraju J (2000) Recent advances in molecular genetics of the silk moth, Bombyx mori. Curr Sci India 78:151–161

    CAS  Google Scholar 

  21. Nagaraju J, Klimenko V, Couble P (2000) The silkworm Bombyx mori, a model genetic system. Encyclopedia of genetics 219–239

  22. Noller H (1991) Ribosomal RNA and translation. Annu Rev Biochem 60:191–227

    Article  PubMed  CAS  Google Scholar 

  23. Peschek J, Braun N, Franzmann T, Georgalis Y, Haslbeck M, Weinkauf S, Buchner J (2009) The eye lens chaperone α-crystallin forms defined globular assemblies. Proc Nat Acad Sci 106:13272

    Article  PubMed  CAS  Google Scholar 

  24. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5:4052–4061

    Article  PubMed  CAS  Google Scholar 

  25. Remacha M, Jimenez-Diaz A, Santos C, Briones E, Zambrano R, Rodriguez G, Guarinos E, Ballesta J (1995) Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochem Cell Biol 73:959–968

    Article  PubMed  CAS  Google Scholar 

  26. Rich B, Steitz J (1987) Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Mol Cell Biol 7:4065–4074

    PubMed  CAS  Google Scholar 

  27. Schulenberg B, Goodman TN, Aggeler R, Capaldi RA, Patton WF (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 25:2526–2532

    Article  PubMed  CAS  Google Scholar 

  28. Shilova V, Garbuz D, Evgen’ev M, Zatsepina O (2006) Small heat shock proteins and adaptation of various Drosophila species to hyperthermia. Mol Biol 40:235–239

    Article  CAS  Google Scholar 

  29. Shimizu T, Nakagaki M, Nishi Y, Kobayashi Y, Hachimori A, Uchiumi T (2002) Interaction among silkworm ribosomal proteins P1, P2 and P0 required for functional protein binding to the GTPase-associated domain of 28S rRNA. Nucleic Acids Res 30:2620–2627

    Article  PubMed  CAS  Google Scholar 

  30. Stromer T, Fischer E, Richter K, Haslbeck M, Buchner J (2004) Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem 279:11222–11228

    Article  PubMed  CAS  Google Scholar 

  31. Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta (BBA) Gene Struct and Expr 1577:1–9

    Article  CAS  Google Scholar 

  32. Uchiumi T, Honma S, Nomura T, Dabbs ER, Hachimori A (2002) Translation elongation by a hybrid ribosome in which proteins at the GTPase center of the Escherichia coli ribosome are replaced with rat counterparts. J Biol Chem 277:3857–3862

    Article  PubMed  Google Scholar 

  33. Uchiumi T, Kominami R (1997) Binding of mammalian ribosomal protein complex P0. P1. P2 and protein L12 to the GTPase-associated domain of 28 S ribosomal RNA and effect on the accessibility to anti-28 S RNA Autoantibody. J Biol Chem 272:3302–3308

    Article  PubMed  CAS  Google Scholar 

  34. Uchiumi T, Wahba A, Traut R (1987) Topography and stoichiometry of acidic proteins in large ribosomal subunits from Artemia salina as determined by crosslinking. Proc Natl Acad Sci USA 84:5580–5584

    Article  PubMed  CAS  Google Scholar 

  35. Van Aken O, Whelan J, Van Breusegem F (2010) Prohibitins: mitochondrial partners in development and stress response. Trends Plant Sci 15:275–282

    Article  PubMed  Google Scholar 

  36. Van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  PubMed  Google Scholar 

  37. Wang H, Buckley K, Yang X, Buchmann R, Bisaro D (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79:7410–7418

    Article  PubMed  CAS  Google Scholar 

  38. Wang H, Hao L, Shung C, Sunter G, Bisaro D (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell Online 15:3020–3032

    CAS  Google Scholar 

  39. Watanabe H (1986) Resistance of the silkworm, Bombyx mori, to viral infections. Agric Ecosyst Environ 15:131–139

    Article  Google Scholar 

  40. Wool I, Chan Y, Glück A, Suzuki K (1991) The primary structure of rat ribosomal proteins P0, P1, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie 73:861–870

    Article  PubMed  CAS  Google Scholar 

  41. Wu S, Storey K (2005) Up-regulation of acidic ribosomal phosphoprotein P0 in response to freezing or anoxia in the freeze tolerant wood frog, Rana sylvatica. Cryobiology 50:71–82

    Article  PubMed  CAS  Google Scholar 

  42. Xiao JH, Li JM, Yuan LP, Tanksley SD (1995) Dominance is the major genetic-basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    PubMed  CAS  Google Scholar 

  43. Zhang P, Aso Y, Yamamoto K, Banno Y, Wang Y, Tsuchida K, Kawaguchi Y, Fujii H (2006) Proteome analysis of silk gland proteins from the silkworm, Bombyx mori. Proteomics 6:2586–2599

    Article  PubMed  CAS  Google Scholar 

  44. Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, Yu ML, Yu F, Li JY, Zhong BX (2008) Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. J Proteome Res 7:5103–5111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2012CB114601) and the National Nature Science Foundation of China (Grant No. 30972142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boxiong Zhong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4634 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Ye, L., Lan, T. et al. Comparative proteomic and phosphoproteomic analysis of the silkworm (Bombyx mori) posterior silk gland under high temperature treatment. Mol Biol Rep 39, 8447–8456 (2012). https://doi.org/10.1007/s11033-012-1698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1698-5

Keywords

Navigation