Molecular Biology Reports

, Volume 39, Issue 7, pp 7473–7478 | Cite as

Interleukin-17 contributes to cardiovascular diseases

  • Hua-Sheng Ding
  • Jun Yang
  • Jian Yang
  • Jia-Wang Ding
  • Ping Chen
  • Ping Zhu


Interleukin (IL)-17 (also known as IL-17A), as the signature cytokine of the newly described T helper 17 (Th17) cell population, is the founding member of a new subclass of cytokines that have highly proinflammatory properties. Recently there is accumulating evidence that stipulates the involvement of IL-17 in the pathogenesis of cardiovascular diseases via amplifying the inflammation induced by other cytokines in synergistic interactions. The present review provides a summary of the potential roles of IL-17 in the context derived from both animal models and clinical settings in cardiovascular diseases, and perspectives for IL-17-targeted cytokine therapy.


Interleukin-17 T helper 17 cells Inflammatary response Cardiovascular diseases 



This work was supported in part by the National Natural Science Foundation of China (Grant No. 81170133) and the Natural Science Foundation of Hubei Province, China (Grant No. 2011CDB179).


  1. 1.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  2. 2.
    Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793PubMedCrossRefGoogle Scholar
  3. 3.
    Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944PubMedCrossRefGoogle Scholar
  4. 4.
    Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18:263–266PubMedCrossRefGoogle Scholar
  5. 5.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132PubMedCrossRefGoogle Scholar
  6. 6.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141PubMedCrossRefGoogle Scholar
  7. 7.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646PubMedCrossRefGoogle Scholar
  8. 8.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949PubMedCrossRefGoogle Scholar
  9. 9.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861PubMedCrossRefGoogle Scholar
  10. 10.
    Bettelli E, Oukka M, Kuchroo VK (2007) TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350PubMedCrossRefGoogle Scholar
  11. 11.
    Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348PubMedCrossRefGoogle Scholar
  12. 12.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688PubMedCrossRefGoogle Scholar
  13. 13.
    Witowski J, Ksiazek K, Jörres A (2004) Interleukin-17: a mediator of inflammatory responses. Cell Mol Life Sci 61:567–579PubMedCrossRefGoogle Scholar
  14. 14.
    Kawaguchi M, Kokubu F, Kuga H, Matsukura S, Hoshino H, Ieki K, Imai T, Adachi M, Huang SK (2001) Modulation of bronchial epithelial cells by IL-17. J Allergy Clin Immunol 108:804–809PubMedCrossRefGoogle Scholar
  15. 15.
    Kim SR, Lee KS, Park SJ, Min KH, Lee KY, Choe YH, Lee YR, Kim JS, Hong SJ, Lee YC (2007) PTEN down-regulates IL-17 expression in a murine model of toluene di isocyanate-induced airway disease. J Immunol 179:6820–6829PubMedGoogle Scholar
  16. 16.
    Von Vietinghoff S, Ley K (2010) Interleukin 17 in vascular inflammation. Cytokine Growth Factor Rev 21:463–469CrossRefGoogle Scholar
  17. 17.
    Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao XF, Pan HF, Yuan H, Zhang WH, Li XP, Wang GH, Wu GC, Su H, Pan FM, Li WX, Li LH, Chen GP, Ye DQ (2010) Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol Biol Rep 37:81–85PubMedCrossRefGoogle Scholar
  19. 19.
    Yuan FL, Li X, Lu WG, Zhao YQ, Li CW, Li JP, Sun JM, Xu RS (2012) Type 17 T-helper cells might be a promising therapeutic target for osteoporosis. Mol Biol Rep 39:771–774PubMedCrossRefGoogle Scholar
  20. 20.
    Rouvier E, Luciani MF, Mattéi MG, Denizot F, Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus Saimiri gene. J Immunol 150:5445–5456PubMedGoogle Scholar
  21. 21.
    Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821PubMedCrossRefGoogle Scholar
  22. 22.
    Yao Z, Timour M, Painter S, Fanslow W, Spriggs M (1996) Complete nucleotide sequence of the mouse CTLA 8 gene. Gene 168:223–225PubMedCrossRefGoogle Scholar
  23. 23.
    Pappu BP, Angkasekwinai P, Dong C (2008) Regulatory mechanisms of helper T cell differentiation: new lessons learned from interleukin 17 family cytokines. Pharmacol Ther 117:374–384PubMedCrossRefGoogle Scholar
  24. 24.
    Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567PubMedCrossRefGoogle Scholar
  25. 25.
    Kolls JK, Lindén A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476PubMedCrossRefGoogle Scholar
  26. 26.
    Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC (2008) Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci U S A 105:19845–19850PubMedCrossRefGoogle Scholar
  27. 27.
    Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by gamma delta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669PubMedGoogle Scholar
  28. 28.
    Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Pagé N, Olivenstein R, Elias J, Chakir J (2001) IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 108:430–438PubMedCrossRefGoogle Scholar
  29. 29.
    Lubberts E (2008) IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine 41:84–91PubMedCrossRefGoogle Scholar
  30. 30.
    Garrett-Sinha LA, John S, Gaffen SL (2008) IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatol 20:519–525PubMedCrossRefGoogle Scholar
  31. 31.
    Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K, Harder B, Okada S, Ostrander CD, Kreindler JL, Aujla SJ, Reardon B, Moore M, Shea P, Schreckhise R, Bukowski TR, Presnell S, Guerra-Lewis P, Parrish-Novak J, Ellsworth JL, Jaspers S, Lewis KE, Appleby M, Kolls JK, Rixon M, West JW, Gao Z, Levin SD (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179:5462–5473PubMedGoogle Scholar
  32. 32.
    Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177:36–39PubMedGoogle Scholar
  33. 33.
    Gaffen SL (2008) An overview of IL-17 function and signaling. Cytokine 43:402–407PubMedCrossRefGoogle Scholar
  34. 34.
    Shalom-Barak T, Quach J, Lotz M (1998) Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB. J Biol Chem 273:27467–27473PubMedCrossRefGoogle Scholar
  35. 35.
    Shen F, Gaffen SL (2008) Structure–function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41:92–104PubMedCrossRefGoogle Scholar
  36. 36.
    Chang SH, Park H, Dong C (2006) Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem 281:35603–35607PubMedCrossRefGoogle Scholar
  37. 37.
    Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, Xiao J, Lu Y, Giltiay N, Liu J, Kordula T, Zhang QW, Vallance B, Swaidani S, Aronica M, Tuohy VK, Hamilton T, Li XX (2007) The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 8:247–256PubMedCrossRefGoogle Scholar
  38. 38.
    Li X (2008) Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine 41:105–113PubMedCrossRefGoogle Scholar
  39. 39.
    Schwandner R, Yamaguchi K, Cao Z (2000) Requirement of tumor necrosis factor receptor-associated factor (TRAF) 6 in interleukin 17 signal transduction. J Exp Med 191:1233–1240PubMedCrossRefGoogle Scholar
  40. 40.
    Fang NX, Yao YT, Shi CX, Li LH (2010) Attenuation of ischemia-reperfusion injury by Sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts. Mol Biol Rep 37:3763–3769PubMedCrossRefGoogle Scholar
  41. 41.
    Yang J, Zhang X-D, Yang J, Ding J-W, Liu Z-Q, Li S-G, Yang R (2010) The cardioprotective effect of fluvastatin on ischemic injury via down-regulation of toll-like receptor 4. Mol Biol Rep 38:3037–3044PubMedCrossRefGoogle Scholar
  42. 42.
    Ke JJ, Yu FX, Rao Y, Wang YL (2011) Adenosine postconditioning protects against myocardial ischemia-reperfusion injury though modulate production of TNF-alpha, prevents activation of transcription factor NF-kappaB. Mol Biol Rep 38:531–553PubMedCrossRefGoogle Scholar
  43. 43.
    Wang LS, Yan JJ, Tang NP, Zhu J, Wang YS, Wang QM, Tang JJ, Wang MW, Jia EZ, Yang ZJ, Huang J (2011) A polymorphism in the visfatin gene promoter is related to decreased plasma levels of inflammatory markers in patients with coronary artery diseases. Mol Biol Rep 38:819–825PubMedCrossRefGoogle Scholar
  44. 44.
    Hansson GK, Libby P, Schonbeck U, Yan ZQ (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291PubMedCrossRefGoogle Scholar
  45. 45.
    Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519PubMedCrossRefGoogle Scholar
  46. 46.
    van der Wal AC, Das PK, Bentz van de Berg D, van der Loos CM, Becker AE (1989) Atherosclerotic lesions in humans. In situ immunophenotypic analysis suggesting an immune mediated response. Lab Invest 61:166–170PubMedGoogle Scholar
  47. 47.
    Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92:1084–1088PubMedGoogle Scholar
  48. 48.
    Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F, Wang Y, Böckler D, Katus HA, Dengler TJ (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 183:8167–8175PubMedCrossRefGoogle Scholar
  49. 49.
    Song L, Schindler C (2004) IL-6 and the acute phase response in murine atherosclerosis. Atherosclerosis 177:43–51PubMedCrossRefGoogle Scholar
  50. 50.
    Eid RE, Rao DA, Zhou J, Lo SF, Ranjbaran H, Gallo A, Sokol SI, Pfau S, Pober JS, Tellides G (2009) Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119:1424–1432PubMedCrossRefGoogle Scholar
  51. 51.
    Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, Yao R, Chen Y, Liao YH (2008) The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 127:89–97PubMedCrossRefGoogle Scholar
  52. 52.
    Xie JJ, Wang J, Tang TT, Chen J, Gao XL, Yuan J, Zhou ZH, Liao MY, Yao R, Yu X, Wang D, Cheng Y, Liao YH, Cheng X (2010) The Th17/Treg functional imbalance during atherogenesis in ApoE (–/–) mice. Cytokine 49:185–193PubMedCrossRefGoogle Scholar
  53. 53.
    de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, Idu MM, van Maldegem F, Aten J, van der Wal AC (2010) Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J Pathol 220:499–508PubMedGoogle Scholar
  54. 54.
    Smith E, Prasad KMR, Butcher M, Dobrian A, Kolls JK, Ley K, Galkina E (2010) Blockade of IL-17A results in reduced atherosclerosis in apoE-deficient mice. Circulation 121:1746–1755PubMedCrossRefGoogle Scholar
  55. 55.
    Chen S, Shimada K, Crother T, Zhang W, Huang G, Arditi M (2010) IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice. J Immunol 185:5619–5627PubMedCrossRefGoogle Scholar
  56. 56.
    Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Snick JV, Yoshimura A, Tedgui A, Mallat Z (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206:2067–2077PubMedCrossRefGoogle Scholar
  57. 57.
    Ribichini F, Wijns W (2002) Acute myocardial infarction: reperfusion treatment. Heart 88:298–305PubMedCrossRefGoogle Scholar
  58. 58.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47PubMedCrossRefGoogle Scholar
  59. 59.
    Huang Y, Rabb H, Womer Kl (2007) Ischemia-reperfusion and immediate T cell responses. Cell Immunol 248:4–11PubMedCrossRefGoogle Scholar
  60. 60.
    Linfert D, Chowdhry T, Rabb H (2009) Lymphocytes and ischemia-reperfusion injury. Transplant Rev 23:1–10CrossRefGoogle Scholar
  61. 61.
    Edgerton C, Crispín JC, Moratz CM, Bettelli E, Oukka M, Simovic M, Zacharia A, Egan R, Chen J, Dalle Lucca JJ, Juang YT, Tsokos GC (2009) IL-17 producing CD4+ T cells mediate accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice. Clin Immunol 130:313–321PubMedCrossRefGoogle Scholar
  62. 62.
    Lu L, Li G, Rao J, Pu L, Yu Y, Wang X, Zhang F (2009) In vitro induced CD4(+)CD25(+)Foxp3(+) Tregs attenuate hepatic ischemia-reperfusion injury. Int Immunopharmacol 9:549–552PubMedCrossRefGoogle Scholar
  63. 63.
    Xia N, Tang TT, Liu Y, Zhou SF, Yan XX, Zhu ZF, Nie SF, Liu J, Zhang WC, Yang Y, Liao YH, Cheng X (2010) The role of IL- 17 in ischemia reperfusion injury. J Clin Cardiol 26:130–132Google Scholar
  64. 64.
    Afzali B, Lombardi G, Lechler RI, Lord GM (2007) The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 148:32–46PubMedCrossRefGoogle Scholar
  65. 65.
    Feng W, Li W, Liu W, Wang F, Li Y, Yan W (2009) IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol 87:212–218PubMedCrossRefGoogle Scholar
  66. 66.
    Liu W, Feng W, Wang F, Li W, Zhou B, Gao C, Li Y, Kong Y, Ma M, Fu S (2008) Adenovirus-mediated ICOSIg gene transfer alleviates cardiac remodeling in experimental autoimmune myocarditis. Immunol Cell Biol 86:659–665PubMedCrossRefGoogle Scholar
  67. 67.
    Yuan J, Yu M, Lin QW, Cao AL, Yu X, Dong JH, Wang JP, Zhang JH, Wang M, Guo HP, Cheng X, Liao YH (2010) Th17 cells contribute to viral replication in coxsackievirus B3-induced acute viral myocarditis. J Immunol 185:4004–4010PubMedCrossRefGoogle Scholar
  68. 68.
    Qing K, Weifeng W, Fan Y, Yuluan Y, Yu P, Yanlan H (2011) Distinct different expression of Th17 and Th9 cells in coxsackie virus B3-induced mice viral myocarditis. Virol J 8:267PubMedCrossRefGoogle Scholar
  69. 69.
    Yang F, Wu WF, Yan YL, Pang Y, Kong Q, Huang YL (2011) Expression of IL-23/Th17 pathway in a murine model of coxsackie virus B3-induced viral myocarditis. Virol J 8:301PubMedCrossRefGoogle Scholar
  70. 70.
    Fan Y, Yuluan Y, Qing K, Yu P, Yanlan H (2011) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of coxsackievirus b3-induced viral myocarditis reduces myocardium inflammation. Virol J 8:17PubMedCrossRefGoogle Scholar
  71. 71.
    Baldeviano GC, Talor MV, Srinivasan S, Bedja D, Zhang D, Gabrielson K, Iwakura Y, Rose NR, Cihakova D (2010) Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res 106:1646–1655PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hua-Sheng Ding
    • 1
    • 2
  • Jun Yang
    • 1
    • 2
  • Jian Yang
    • 1
    • 2
  • Jia-Wang Ding
    • 1
    • 2
  • Ping Chen
    • 3
  • Ping Zhu
    • 4
  1. 1.Institute of Cardiovascular DiseasesChina Three Gorges UniversityYichang China
  2. 2.Department of Cardiology, The First College of Clinical Medical SciencesChina Three Gorges UniversityYichang China
  3. 3.Department of Emergency, The First College of Clinical Medical SciencesChina Three Gorges UniversityYichang China
  4. 4.Department of Nephrology, The First College of Clinical Medical SciencesChina Three Gorges UniversityYichang China

Personalised recommendations