Advertisement

Molecular Biology Reports

, Volume 39, Issue 6, pp 6835–6842 | Cite as

Genetic variations in SREBP-1 and LXRα are not directly associated to PCOS but contribute to the physiological specifics of the syndrome

  • Birgit Knebel
  • Onno E. Janssen
  • Susanne Hahn
  • Sylvia Jacob
  • Ulrike Nitzgen
  • Jutta Haas
  • Dirk Muller-Wieland
  • Jorg Kotzka
Article

Abstract

The polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder consisting of reproductive disturbances associated with all aspects of the metabolic syndrome and genetic components in the pathology of this complex disease is very likely. Accordingly, variations in single genes might affect specific features of PCOS and thereby help to define different subgroups. SREBP-1 or LXRα have been shown to be genetically linked to lipid metabolism or insulin sensitivity. As these are two major aspects of the PCOS phenotype, we evaluated both genes in a cohort of 153 PCOS patients. Analyses of both genes revealed in SREBF-1, i.e. SREBP-1a and SREBP-1c, not any variation and in the LXRα gene no novel sequence variations. Common variants of LXRα (rs2279238:G; all:0.8658; PCOS:0.8627; controls: 0.8686 or A: all:0.13412; PCOS:0.1373; controls:0.1314; (OR (95% CI) 0.9508 (0.4226–2.1385); rs11039155: G: all:0.8767; PCOS:0.8663; controls:0.8857 and A all:0.1233; PCOS:0.1337; controls:0.1143; (OR (95% CI) 0.8383 (0.3618–1.9371)) were also not directly associated to PCOS. Combined analyses of both polymorphism revealed that there was no difference of distribution between the groups. In contrast, analyses of the impact of these polymorphisms on metabolic parameters of the syndrome indicated significant differences related to genotypes. The data indicated that rs11039155 increases metabolic risk, whereas rs2279238 has a protective effect on the overall metabolic risk. The investigation of the PCOS group presented indicates that the combined analyses of variations in putative candidate genes allowed a genotype-phenotype correlation for metabolic features.

Keywords

PCOS Obesity Lipid metabolism Insulin sensitivity Susceptibility genes 

References

  1. 1.
    Goodarzi MO, Dumesic DA, Chazenbalk G et al (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7:219–231PubMedCrossRefGoogle Scholar
  2. 2.
    Wild RA, Carmina E, Diamanti-Kandarakis E et al (2010) Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the androgen excess and polycystic ovary syndrome (AE-PCOS) society. J Clin Endocrinol Metab 95:2038–2049PubMedCrossRefGoogle Scholar
  3. 3.
    Toulis KA, Goulis DG, Mintziori G et al (2011) Meta-analysis of cardiovascular disease risk markers in women with polycystic ovary syndrome. Hum Reprod Update. doi: 10.1093/humupd/dmr025
  4. 4.
    Zawadski JK, Dunai FA (1992) Diagnostic criteria for polycystic ovary syndrome: toward a rational approach. In: Dunaif A, Givens JR, Hasettine FP (eds) Polycystic ovary syndrome. Blackwell Scientific Publications, Boston, pp 377–384Google Scholar
  5. 5.
    Rotterdam ESHRE/ASRMSponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47CrossRefGoogle Scholar
  6. 6.
    Azziz R, Carmina E, Dewailly D, Androgen Excess Society et al (2006) Androgen excess society position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 91:4237–4245PubMedCrossRefGoogle Scholar
  7. 7.
    Salesi M, Bravo-Vera R, Sheikh A et al (2004) Pathogenesis of the polycystic ovary syndrome: what is the role of obesity? Metabolism 53:358–376CrossRefGoogle Scholar
  8. 8.
    Venkatesan AM, Dunaif A, Corbould A (2001) Insulin resistance in polycystic ovary syndrome: progress and paradoxes. Recent Prog Horm Res 56:295–308PubMedCrossRefGoogle Scholar
  9. 9.
    Azziz R (2004) PCOS: a diagnostic challenge. Reprod Biomed Online 8:644–648PubMedCrossRefGoogle Scholar
  10. 10.
    O‘Meara NM, Blackman JD, Ehrmann DA et al (1993) Defects in beta-cell function in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 76:1241–1247PubMedCrossRefGoogle Scholar
  11. 11.
    Hudecova M, Holte J, Olovsson M et al (2009) Long-term follow-up of patients with polycystic ovary syndrome: reproductive outcome and ovarian reserve. Hum Reprod 24:1176–1183PubMedCrossRefGoogle Scholar
  12. 12.
    Sam S, Dunaif A (2003) Polycystic ovary syndrome: syndrome XX? Trends Endocrinol Metab 14:365–370PubMedCrossRefGoogle Scholar
  13. 13.
    Rebuffé-Scrive M, Cullberg G, Lundberg PA et al (1989) Anthropometric variables and metabolism in polycystic ovarian disease. Horm Metab Res 21:391–397PubMedCrossRefGoogle Scholar
  14. 14.
    Meyer C, McGrath BP, Teede HJ (2005) Overweight women with polycystic ovary syndrome have evidence of subclinical cardiovascular disease. J Clin Endocrinol Metab 90:5711–5716PubMedCrossRefGoogle Scholar
  15. 15.
    Lo JC, Feigenbaum SL, Yang J et al (2006) Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J Clin Endocrinol Metab 91:1357–1363PubMedCrossRefGoogle Scholar
  16. 16.
    Wild RA, Rizzo M, Clifton S et al (2011) Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril 95:1073–1079PubMedCrossRefGoogle Scholar
  17. 17.
    Mukherjee S, Maitra A (2010) Molecular & genetic factors contributing to insulin resistance in polycystic ovary syndrome. Indian J Med Res 131:743–760PubMedGoogle Scholar
  18. 18.
    Azziz R, Dumesic DA, Goodarzi MO (2010) Polycystic ovary syndrome: an ancient disorder? Fertil Steril 95:1544–1548PubMedCrossRefGoogle Scholar
  19. 19.
    Deligeoroglou E, Kouskouti C, Christopoulos P (2009) The role of genes in the polycystic ovary syndrome: predisposition and mechanisms. Gynecol Endocrinol 25:603–609PubMedCrossRefGoogle Scholar
  20. 20.
    Chen ZJ, Zhao H, He L et al (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 43:55–59PubMedCrossRefGoogle Scholar
  21. 21.
    Goodarzi MO, Louwers YV, Taylor KD et al (2011) Replication of association of a novel insulin receptor gene polymorphism with polycystic ovary syndrome. Fertil Steril 95:1736–1741PubMedCrossRefGoogle Scholar
  22. 22.
    Zhao C, Dahlman-Wright K (2010) Liver X receptor in cholesterol metabolism. J Endocrinol 204:233–240PubMedCrossRefGoogle Scholar
  23. 23.
    Raghow R, Yellaturu C, Deng X et al (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19:65–73PubMedCrossRefGoogle Scholar
  24. 24.
    Ferré P, Foufelle F (2007) SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68:72–82PubMedCrossRefGoogle Scholar
  25. 25.
    Harada N, Yonemoto H, Yoshida M et al (2008) Alternative splicing produces a constitutively active form of human SREBP-1 Biochem. Biophys Res Commun 368:820–826CrossRefGoogle Scholar
  26. 26.
    Hahn S, Fingerhut A, Khomtsiv U et al (2005) The peroxisome proliferator activated receptor gamma Pro12Ala polymorphism is associated with a lower hirsutism score and increased insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 62:573–579CrossRefGoogle Scholar
  27. 27.
    Knebel B, Janssen OE, Hahn S et al (2008) Increased low grade inflammatory serum markers in patients with polycystic ovary syndrome (PCOS) and their relationship to PPARgamma gene variants. Exp Clin Endocrinol Diabetes 116:481–486PubMedCrossRefGoogle Scholar
  28. 28.
    Knebel B, Janssen OE, Hahn S et al (2009) Combined analyses of paraoxonase-1 and IGF-2 polymorphism in polycystic ovary syndrome. Dtsch Med Wochenschr 134:1040–1046PubMedCrossRefGoogle Scholar
  29. 29.
    Vernia S, Eberle D, Hernandez Mijares A et al (2006) A rare missense mutation in a type 2 diabetes subject decreases the transcriptional activity of human sterol regulatory element binding protein-1. Hum Mutat 27:212PubMedCrossRefGoogle Scholar
  30. 30.
    Choukem SP, Boudou P, Sobngwi E et al (2009) The polymorphism Arg585Gln in the gene of the sterol regulatory element binding protein-1 (SREBP-1) is not a determinant of ketosis prone type 2 diabetes (KPD) in Africans. Diabetes Metab 35:20–24PubMedCrossRefGoogle Scholar
  31. 31.
    Kotzka J, Knebel B, Janssen OE et al (2011) Identification of a gene variant in the master regulator of lipid metabolism SREBP-1 in a family with a novel form of severe combined hypolipidemia. Atherosclerosis 218:134–143PubMedCrossRefGoogle Scholar
  32. 32.
    Ketterer C, Müssig K, Machicao F et al (2011) Genetic variation within the NR1H2 gene encoding liver X receptor β associates with insulin secretion in subjects at increased risk for type 2 diabetes. J Mol Med 89:75–81PubMedCrossRefGoogle Scholar
  33. 33.
    Price ET, Pacanowski MA, Martin MA et al (2011) Liver X receptor α gene polymorphisms and variable cardiovascular outcomes in patients treated with antihypertensive therapy: results from the INVEST-GENES study. Pharmacogenet Genomics 21:333–340PubMedCrossRefGoogle Scholar
  34. 34.
    Dahlman I, Nilsson M, Jiao H et al (2006) Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenet Genomics 16:881–889PubMedCrossRefGoogle Scholar
  35. 35.
    Legry V, Cottel D, Ferrières J et al (2008) Association between liver X receptor alpha gene polymorphisms and risk of metabolic syndrome in French populations. Int J Obes (Lond) 32:421–428CrossRefGoogle Scholar
  36. 36.
    Legry V, Bokor S, Beghin L, HELENA Study Group et al (2011) Associations between common genetic polymorphisms in the liver X receptor alpha and its target genes with the serum HDL-cholesterol concentration in adolescents of the HELENA Study. Atherosclerosis 216:166–169PubMedCrossRefGoogle Scholar
  37. 37.
    Ewens KG, Jones MR, Ankener W et al (2011) Type 2 diabetes susceptibility single-nucleotide polymorphisms are not associated with polycystic ovary syndrome. Fertil Steril 95:2538–2541PubMedCrossRefGoogle Scholar
  38. 38.
    Ewens KG, Jones MR, Ankener W et al (2011) FTO and MC4R gene variants are associated with obesity in polycystic ovary syndrome. PLoS One 6:e16390PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Birgit Knebel
    • 1
  • Onno E. Janssen
    • 2
  • Susanne Hahn
    • 3
  • Sylvia Jacob
    • 1
  • Ulrike Nitzgen
    • 1
  • Jutta Haas
    • 4
  • Dirk Muller-Wieland
    • 4
  • Jorg Kotzka
    • 1
  1. 1.Institute of Clinical Biochemistry and PathobiochemistryGerman Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes ResearchDüsseldorfGermany
  2. 2.Endokrinologikum HamburgHamburgGermany
  3. 3.Medical Practice for EndocrinologyWuppertalGermany
  4. 4.Department of General Internal Medicine Institute for Diabetes ResearchAsklepios Klinik St. Georg, Medical Faculty of Semmelweis UniversityHamburgGermany

Personalised recommendations