Skip to main content
Log in

Genetic variations in SREBP-1 and LXRα are not directly associated to PCOS but contribute to the physiological specifics of the syndrome

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder consisting of reproductive disturbances associated with all aspects of the metabolic syndrome and genetic components in the pathology of this complex disease is very likely. Accordingly, variations in single genes might affect specific features of PCOS and thereby help to define different subgroups. SREBP-1 or LXRα have been shown to be genetically linked to lipid metabolism or insulin sensitivity. As these are two major aspects of the PCOS phenotype, we evaluated both genes in a cohort of 153 PCOS patients. Analyses of both genes revealed in SREBF-1, i.e. SREBP-1a and SREBP-1c, not any variation and in the LXRα gene no novel sequence variations. Common variants of LXRα (rs2279238:G; all:0.8658; PCOS:0.8627; controls: 0.8686 or A: all:0.13412; PCOS:0.1373; controls:0.1314; (OR (95% CI) 0.9508 (0.4226–2.1385); rs11039155: G: all:0.8767; PCOS:0.8663; controls:0.8857 and A all:0.1233; PCOS:0.1337; controls:0.1143; (OR (95% CI) 0.8383 (0.3618–1.9371)) were also not directly associated to PCOS. Combined analyses of both polymorphism revealed that there was no difference of distribution between the groups. In contrast, analyses of the impact of these polymorphisms on metabolic parameters of the syndrome indicated significant differences related to genotypes. The data indicated that rs11039155 increases metabolic risk, whereas rs2279238 has a protective effect on the overall metabolic risk. The investigation of the PCOS group presented indicates that the combined analyses of variations in putative candidate genes allowed a genotype-phenotype correlation for metabolic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goodarzi MO, Dumesic DA, Chazenbalk G et al (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7:219–231

    Article  PubMed  CAS  Google Scholar 

  2. Wild RA, Carmina E, Diamanti-Kandarakis E et al (2010) Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the androgen excess and polycystic ovary syndrome (AE-PCOS) society. J Clin Endocrinol Metab 95:2038–2049

    Article  PubMed  CAS  Google Scholar 

  3. Toulis KA, Goulis DG, Mintziori G et al (2011) Meta-analysis of cardiovascular disease risk markers in women with polycystic ovary syndrome. Hum Reprod Update. doi:10.1093/humupd/dmr025

  4. Zawadski JK, Dunai FA (1992) Diagnostic criteria for polycystic ovary syndrome: toward a rational approach. In: Dunaif A, Givens JR, Hasettine FP (eds) Polycystic ovary syndrome. Blackwell Scientific Publications, Boston, pp 377–384

    Google Scholar 

  5. Rotterdam ESHRE/ASRMSponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47

    Article  Google Scholar 

  6. Azziz R, Carmina E, Dewailly D, Androgen Excess Society et al (2006) Androgen excess society position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 91:4237–4245

    Article  PubMed  CAS  Google Scholar 

  7. Salesi M, Bravo-Vera R, Sheikh A et al (2004) Pathogenesis of the polycystic ovary syndrome: what is the role of obesity? Metabolism 53:358–376

    Article  Google Scholar 

  8. Venkatesan AM, Dunaif A, Corbould A (2001) Insulin resistance in polycystic ovary syndrome: progress and paradoxes. Recent Prog Horm Res 56:295–308

    Article  PubMed  CAS  Google Scholar 

  9. Azziz R (2004) PCOS: a diagnostic challenge. Reprod Biomed Online 8:644–648

    Article  PubMed  Google Scholar 

  10. O‘Meara NM, Blackman JD, Ehrmann DA et al (1993) Defects in beta-cell function in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 76:1241–1247

    Article  PubMed  Google Scholar 

  11. Hudecova M, Holte J, Olovsson M et al (2009) Long-term follow-up of patients with polycystic ovary syndrome: reproductive outcome and ovarian reserve. Hum Reprod 24:1176–1183

    Article  PubMed  CAS  Google Scholar 

  12. Sam S, Dunaif A (2003) Polycystic ovary syndrome: syndrome XX? Trends Endocrinol Metab 14:365–370

    Article  PubMed  CAS  Google Scholar 

  13. Rebuffé-Scrive M, Cullberg G, Lundberg PA et al (1989) Anthropometric variables and metabolism in polycystic ovarian disease. Horm Metab Res 21:391–397

    Article  PubMed  Google Scholar 

  14. Meyer C, McGrath BP, Teede HJ (2005) Overweight women with polycystic ovary syndrome have evidence of subclinical cardiovascular disease. J Clin Endocrinol Metab 90:5711–5716

    Article  PubMed  CAS  Google Scholar 

  15. Lo JC, Feigenbaum SL, Yang J et al (2006) Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J Clin Endocrinol Metab 91:1357–1363

    Article  PubMed  CAS  Google Scholar 

  16. Wild RA, Rizzo M, Clifton S et al (2011) Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril 95:1073–1079

    Article  PubMed  CAS  Google Scholar 

  17. Mukherjee S, Maitra A (2010) Molecular & genetic factors contributing to insulin resistance in polycystic ovary syndrome. Indian J Med Res 131:743–760

    PubMed  CAS  Google Scholar 

  18. Azziz R, Dumesic DA, Goodarzi MO (2010) Polycystic ovary syndrome: an ancient disorder? Fertil Steril 95:1544–1548

    Article  PubMed  Google Scholar 

  19. Deligeoroglou E, Kouskouti C, Christopoulos P (2009) The role of genes in the polycystic ovary syndrome: predisposition and mechanisms. Gynecol Endocrinol 25:603–609

    Article  PubMed  CAS  Google Scholar 

  20. Chen ZJ, Zhao H, He L et al (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 43:55–59

    Article  PubMed  Google Scholar 

  21. Goodarzi MO, Louwers YV, Taylor KD et al (2011) Replication of association of a novel insulin receptor gene polymorphism with polycystic ovary syndrome. Fertil Steril 95:1736–1741

    Article  PubMed  CAS  Google Scholar 

  22. Zhao C, Dahlman-Wright K (2010) Liver X receptor in cholesterol metabolism. J Endocrinol 204:233–240

    Article  PubMed  CAS  Google Scholar 

  23. Raghow R, Yellaturu C, Deng X et al (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19:65–73

    Article  PubMed  CAS  Google Scholar 

  24. Ferré P, Foufelle F (2007) SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68:72–82

    Article  PubMed  Google Scholar 

  25. Harada N, Yonemoto H, Yoshida M et al (2008) Alternative splicing produces a constitutively active form of human SREBP-1 Biochem. Biophys Res Commun 368:820–826

    Article  CAS  Google Scholar 

  26. Hahn S, Fingerhut A, Khomtsiv U et al (2005) The peroxisome proliferator activated receptor gamma Pro12Ala polymorphism is associated with a lower hirsutism score and increased insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 62:573–579

    Article  CAS  Google Scholar 

  27. Knebel B, Janssen OE, Hahn S et al (2008) Increased low grade inflammatory serum markers in patients with polycystic ovary syndrome (PCOS) and their relationship to PPARgamma gene variants. Exp Clin Endocrinol Diabetes 116:481–486

    Article  PubMed  CAS  Google Scholar 

  28. Knebel B, Janssen OE, Hahn S et al (2009) Combined analyses of paraoxonase-1 and IGF-2 polymorphism in polycystic ovary syndrome. Dtsch Med Wochenschr 134:1040–1046

    Article  PubMed  CAS  Google Scholar 

  29. Vernia S, Eberle D, Hernandez Mijares A et al (2006) A rare missense mutation in a type 2 diabetes subject decreases the transcriptional activity of human sterol regulatory element binding protein-1. Hum Mutat 27:212

    Article  PubMed  Google Scholar 

  30. Choukem SP, Boudou P, Sobngwi E et al (2009) The polymorphism Arg585Gln in the gene of the sterol regulatory element binding protein-1 (SREBP-1) is not a determinant of ketosis prone type 2 diabetes (KPD) in Africans. Diabetes Metab 35:20–24

    Article  PubMed  CAS  Google Scholar 

  31. Kotzka J, Knebel B, Janssen OE et al (2011) Identification of a gene variant in the master regulator of lipid metabolism SREBP-1 in a family with a novel form of severe combined hypolipidemia. Atherosclerosis 218:134–143

    Article  PubMed  CAS  Google Scholar 

  32. Ketterer C, Müssig K, Machicao F et al (2011) Genetic variation within the NR1H2 gene encoding liver X receptor β associates with insulin secretion in subjects at increased risk for type 2 diabetes. J Mol Med 89:75–81

    Article  PubMed  CAS  Google Scholar 

  33. Price ET, Pacanowski MA, Martin MA et al (2011) Liver X receptor α gene polymorphisms and variable cardiovascular outcomes in patients treated with antihypertensive therapy: results from the INVEST-GENES study. Pharmacogenet Genomics 21:333–340

    Article  PubMed  CAS  Google Scholar 

  34. Dahlman I, Nilsson M, Jiao H et al (2006) Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenet Genomics 16:881–889

    Article  PubMed  CAS  Google Scholar 

  35. Legry V, Cottel D, Ferrières J et al (2008) Association between liver X receptor alpha gene polymorphisms and risk of metabolic syndrome in French populations. Int J Obes (Lond) 32:421–428

    Article  CAS  Google Scholar 

  36. Legry V, Bokor S, Beghin L, HELENA Study Group et al (2011) Associations between common genetic polymorphisms in the liver X receptor alpha and its target genes with the serum HDL-cholesterol concentration in adolescents of the HELENA Study. Atherosclerosis 216:166–169

    Article  PubMed  CAS  Google Scholar 

  37. Ewens KG, Jones MR, Ankener W et al (2011) Type 2 diabetes susceptibility single-nucleotide polymorphisms are not associated with polycystic ovary syndrome. Fertil Steril 95:2538–2541

    Article  PubMed  CAS  Google Scholar 

  38. Ewens KG, Jones MR, Ankener W et al (2011) FTO and MC4R gene variants are associated with obesity in polycystic ovary syndrome. PLoS One 6:e16390

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorg Kotzka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knebel, B., Janssen, O.E., Hahn, S. et al. Genetic variations in SREBP-1 and LXRα are not directly associated to PCOS but contribute to the physiological specifics of the syndrome. Mol Biol Rep 39, 6835–6842 (2012). https://doi.org/10.1007/s11033-012-1508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1508-0

Keywords

Navigation