Molecular Biology Reports

, Volume 39, Issue 6, pp 6495–6503 | Cite as

Tanshinone IIA protects PC12 cells from β-amyloid25–35-induced apoptosis via PI3K/Akt signaling pathway

  • Huimin Dong
  • Shanpin Mao
  • Jiajun Wei
  • Baohui Liu
  • Zhaohui Zhang
  • Qian Zhang
  • Mingmin Yan


For the aging populations of any nation, Dementia is becoming a primary problem and Alzheimer’s dementia (AD) is the most common type. However, until now, there is no effective treatment for AD. Tanshinone IIA (Tan IIA) has been reported for neuroprotective potential to against amyloid β peptides (Aβ)-induced cytotoxicity in the rat pheochromocytoma cell line PC-12, which is widely used as AD research model, but the mechanism still remains unclear. To investigate the effect of Tan IIA and the possible molecular mechanism in the apoptosis of PC12 cells, we induced apoptosis in PC12 cells with β-amyloid25–35, and treated cells with Tan IIA. After 24 h treatment, we found that Tan IIA increased the cell viability and reduced the number of apoptotic cells induced by Aβ25–35. However, neuroprotection of Tan IIA was abolished by PI3K inhibitor LY294002. Meanwhile, Treatment with lithium chloride, a phosphorylation inhibitor of GSK3β, which is a downstream target of PI3K/Akt, can block Aβ25–35-induced cell apoptosis in a Tan IIA-like manner. Our findings suggest that Tan IIA is an effective neuroprotective agent and a viable candidate in AD therapy and PI3K/Akt activation and GSK3β phosphorylation are involved in the neuroprotection of Tan IIA.


Alzheimer’s disease Tanshinone IIA 25–35 Akt Glycogen synthase kinase-3β PC12 cells Neuroprotection 


  1. 1.
    Kremer A, Louis JV, Jaworski T, Van Leuven F (2011) GSK3 and Alzheimer’s disease: facts and fiction. Front Mol Neurosci 4:17PubMedCrossRefGoogle Scholar
  2. 2.
    Zekanowski C, Wojda U (2009) Aneuploidy chromosomal missegregation, and cell cycle reentry in Alzheimer’s disease. Acta Neurobiol Exp (Wars) 69:232–253Google Scholar
  3. 3.
    Bing Song, Korbin Davis X, Shawn Liu, Hyoung-gon Lee, Mark Smith, Xiaoqi Liu (2011) Inhibition of Polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer’s disease. Aging (Albany NY) [Epub ahead of print]Google Scholar
  4. 4.
    Sun L, Guo C, Liu D, Zhao Y, Zhang Y, Song Z, Han H, Chen D, Zhao Y (2011) Protective effects of bone morphogenetic protein 7 against amyloid-beta induced neurotoxicity in PC12 cells. Neuroscience 184:151–163PubMedCrossRefGoogle Scholar
  5. 5.
    Xing G, Dong M, Li X, Zou Y, Fan L, Wang X, Cai D, Li C, Zhou L, Liu J, Niu Y (2011) Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway. Brain Res Bull 85(3–4):212–218PubMedCrossRefGoogle Scholar
  6. 6.
    Song JX, Lin X, Wong RN, Sze SC, Tong Y, Shaw PC, Zhang YB (2011) Protective effects of dibenzocyclooctadiene lignans from Schisandra chinensis against beta-amyloid and homocysteine neurotoxicity in PC12 cells. Phytother Res 25(3):435–443PubMedGoogle Scholar
  7. 7.
    Liu X, Xu K, Yan M, Wang Y, Zheng X (2010) Protective effects of galantamine against Abeta-induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem Int 57(5):588–599PubMedCrossRefGoogle Scholar
  8. 8.
    Phiel CJ, Wilson CA, Lee VM-Y, Klein PS (2003) GSK-3α regulates production of Alzheimer’s disease amyloid-b peptides. Nature 423:435–439PubMedCrossRefGoogle Scholar
  9. 9.
    Jia Y, Huang F, Zhang S, Leung SW (2011) Is danshen (Salvia miltiorrhiza) dripping pill more effective than isosorbide dinitrate in treating angina pectoris? A systematic review of randomized controlled trials. Int J Cardiol Jan 18 [Epub ahead of print]Google Scholar
  10. 10.
    Imanshahidi M, Hosseinzadeh H (2006) The pharmacological effects of Salvia species on the central nervous system. Phytother Res 20:427–437PubMedCrossRefGoogle Scholar
  11. 11.
    Won SH, Lee HJ, Jeong SJ, Lee HJ, Lee EO, Jung DB, Shin JM, Kwon TR, Yun SM, Lee MH, Choi SH, Lü J, Kim SH (2010) Tan IIA induces mitochondria dependent apoptosis in prostate cancer cells in association with an inhibition of phosphoinositide 3-kinase/AKT pathway. Biol Pharm Bull 33:1828–1834PubMedCrossRefGoogle Scholar
  12. 12.
    Lin HQ, Ho MT, Lau LS, Wong KK, Shaw PC, Wan DC (2008) Anti-acetylcholinesterase activities of traditional Chinese medicine for treating Alzheimer’s disease. Chem Biol Inter 175:352–354CrossRefGoogle Scholar
  13. 13.
    Liu T, Jin H, Sun QR, Xu JH, Hu HT (2010) The neuroprotective effects of tanshinone IIA on β-amyloid-induced toxicity in rat cortical neurons. Neuropharmacology 59(7–8):595–604PubMedCrossRefGoogle Scholar
  14. 14.
    Wan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, Wang JH, Lai KO, Wu Z, Ip NY (2010) Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. J Neurosci 30(20):6873–6881PubMedCrossRefGoogle Scholar
  15. 15.
    Mines Marjelo A, Beurel Eleonore, Jope Richard S (2011) Regulation of cell survival mechanisms in Alzheimer’s disease by glycogen synthase kinase-3. Int J Alzheimers Dis. doi: 10.4061/2011/861072 PubMedGoogle Scholar
  16. 16.
    Ma Rong, Xiong Nian, Huang Chengfang, Tang Qiang, Benrong Hu, Xiang Jizhou, Li Gang (2009) Erythropoietin protects PC12 cells from β-amyloid25–35-induced apoptosis via PI3K/Akt signaling pathway. Neuropharmacology 56:1027–1034PubMedCrossRefGoogle Scholar
  17. 17.
    Tato I, Bartrons R, Ventura F, Rosa JL (2011) Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 286:6128–6142PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao R, Zhang Z, Song Y, Wang D, Qi J, Wen S (2011) Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1’s attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation. J Ethnopharmacol 133:1109–1116PubMedCrossRefGoogle Scholar
  19. 19.
    Jarvis K, Assis-Nascimento P, Mudd LM, Montague JR (2007) Beta-amyloid toxicity and reversal in embryonic rat septal neurons. Neurosci Lett 423:184–188PubMedCrossRefGoogle Scholar
  20. 20.
    Sokol DK, Maloney B, Long JM, Ray B, Lahiri DK (2011) Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology 76:1344–1352PubMedCrossRefGoogle Scholar
  21. 21.
    Bonda DJ, Lee HG, Camins A, Pallàs M, Casadesus G, Smith MA, Zhu X (2011) The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol 10:275–279PubMedCrossRefGoogle Scholar
  22. 22.
    Amtul Z, Uhrig M, Beyreuther K (2011) Additive effects of fatty acid mixtures on the levels and ratio of amyloid β 40/42 peptides differ from the effects of individual fatty acids. J Neurosci Res. doi: 10.1002/jnr.22706. [Epub ahead of print]
  23. 23.
    Hongpaisan J, Sun MK, Alkon DL (2011) PKC ε activation prevents synaptic loss, A β elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 31:630–643PubMedCrossRefGoogle Scholar
  24. 24.
    Jawhar S, Wirths O, Schilling S, Graubner S, Demuth HU, Bayer TA (2011) Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate A{beta} formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J Biol Chem 286:4454–4460PubMedCrossRefGoogle Scholar
  25. 25.
    Xi YD, Yu HL, Ma WW, Ding BJ, Ding J, Yuan LH, Feng JF, Xiao (2011) Genistein inhibits mitochondrial-targeted oxidative damage induced by beta-amyloid peptide 25–35 in PC12 cells. J Bioenerg Biomembr 43(4):399–407PubMedCrossRefGoogle Scholar
  26. 26.
    Fu J, Huang H, Liu J, Pi R, Chen J, Liu P (2007) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568:213–221PubMedCrossRefGoogle Scholar
  27. 27.
    Lam BY, Lo AC, Sun X, Luo HW, Chung SK, Sucher NJ (2003) Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine 10:286–291PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359PubMedCrossRefGoogle Scholar
  29. 29.
    Meng XF, Zou XJ, Peng B, Shi J, Guan XM, Zhang C (2006) Inhibition of ethanol-induced toxicity by tanshinone IIA in PC12 cells. Acta Pharmacol Sin 27(6):659–664PubMedCrossRefGoogle Scholar
  30. 30.
    Spillantini MG, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21:428–433PubMedCrossRefGoogle Scholar
  31. 31.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159PubMedCrossRefGoogle Scholar
  32. 32.
    Geschwind DH, Miller BL (2001) Molecular approaches to cerebral laterality: development and neurodegeneration. Am J Med Genet 101:370–381PubMedCrossRefGoogle Scholar
  33. 33.
    Aparicio IM, Garcia-Herreros M, Fair T, Lonergan P (2010) Identification and regulation of glycogen synthase kinase-3 during bovine embryo development. Reproduction 140(1):83–92PubMedCrossRefGoogle Scholar
  34. 34.
    Moore SF, Hunter RW, Hers I (2011) mTORC2-mediated Akt Ser473 phosphorylation is not required for Akt1 activity in human platelets. J Biol ChemMay 18. [Epub ahead of print]Google Scholar
  35. 35.
    Koide H, Asai T, Furuya K, Tsuzuku T, Kato H, Dewa T, Nango M, Maeda N, Oku N (2011) Inhibition of Akt (ser473) phosphorylation and rapamycin-resistant cell growth by knockdown of mammalian target of rapamycin with small interfering RNA in vascular endothelial growth factor receptor-1-targeting vector. Biol Pharm Bull 34:602–608PubMedCrossRefGoogle Scholar
  36. 36.
    Shi X, McGinty JF (2011) D1 and D2 dopamine receptors differentially mediate the activation of phosphoproteins in the striatum of amphetamine-sensitized rats. Psychopharmacology (Berl) 214:653–663CrossRefGoogle Scholar
  37. 37.
    Mannoury la Cour C, Salles MJ, Pasteau V, Millan MJ (2011) Signaling pathways leading to phosphorylation of Akt and GSK-3β by activation of cloned human and rat cerebral D2 and D3 receptors. Mol Pharmacol 79:91–105PubMedCrossRefGoogle Scholar
  38. 38.
    Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J (2010) Mu-opioid receptors transiently activate the Akt-nNOS pathway to produce sustained potentiation of PKC-mediated NMDAR-CaMKII signaling. PLoS One 5:e11278PubMedCrossRefGoogle Scholar
  39. 39.
    Soriano FX, Papadia S, Hofmann F, Hardingham NR, Bading H, Hardingham GE (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26:4509–4518PubMedCrossRefGoogle Scholar
  40. 40.
    Zhao R, Zhang Z, Song Y, Wang D, Qi J, Wen S (2011) Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1’s attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation. J Ethnopharmacol 133(3):1109–1116PubMedCrossRefGoogle Scholar
  41. 41.
    Beaulieu Jean-Martin, Gainetdinov Raul R, Caron Marc G (2009) Akt/GSK3 Signaling in the Action of Psychotropic Drugs. Annu Rev Pharmacol Toxicol 49:327–347PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Huimin Dong
    • 1
  • Shanpin Mao
    • 1
  • Jiajun Wei
    • 1
  • Baohui Liu
    • 1
  • Zhaohui Zhang
    • 1
  • Qian Zhang
    • 1
  • Mingmin Yan
    • 1
  1. 1.Renmin HospitalWuhan UniversityWuhanChina

Personalised recommendations