Molecular Biology Reports

, Volume 39, Issue 6, pp 6655–6660 | Cite as

Diagnosis of mitochondrial disorders applying massive pyrosequencing

  • Marcelo Andrés Kauffman
  • Dolores González-Morón
  • Damián Consalvo
  • Gastón Westergaard
  • Martín Vazquez
  • Estefanía Mancini
  • Ana Lía Taratuto
  • Raúl Rey
  • Silvia Kochen


Mitochondrial disorders are a frequent cause of neurological disability affecting children and adults. Traditionally, molecular diagnosis of mitochondrial diseases was mostly accomplished by the use of Sanger sequencing and PCR–RFLP. However, there are particular drawbacks associated with the use of these methods. Recent multidisciplinary advances have led to new sequencing methods that may overcome these limitations. Our goal was to explore the use of a next generation sequencing platform in the molecular diagnosis of mitochondrial diseases reporting our findings in adult patients that present with a clinical-pathological diagnosis of a mitochondrial encephalomyopathy. Complete genomic sequences of mitochondrial DNA were obtained by 454 massive pyrosequencing from blood samples. The analysis of these sequences allowed us to identify two diagnostic pathogenic mutations and 74 homoplasmic polymorphisms, useful for obtaining high-resolution mitochondrial haplogroups. In summary, molecular diagnosis of mitochondrial disorders could be efficiently done from readily accessible samples, such as blood, with the use of a new sequencing platform.


Mitochondrial disorders Genetics Next generation sequencing 



This study was supported by a grant from the Argentine National Research Council (CONICET). MAK, MV and SK are members of the research career of CONICET.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11033_2012_1471_MOESM1_ESM.pdf (7 kb)
Supplementary Table 1. Mitochondrial DNA high confidence variants identified by 454 sequencing. (PDF 7 kb)


  1. 1.
    Wong LJ, Scaglia F, Graham BH, Craigen WJ (2010) Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 100(2):111–117. doi: 10.1016/j.ymgme.2010.02.024 PubMedCrossRefGoogle Scholar
  2. 2.
    He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464(7288):610–614. doi: 10.1038/nature08802 PubMedCrossRefGoogle Scholar
  3. 3.
    Poulton J, Chiaratti MR, Meirelles FV, Kennedy S, Wells D, Holt IJ (2010) Transmission of mitochondrial DNA diseases and ways to prevent them. PLoS Genet 6(8):e1001066. doi: 10.1371/journal.pgen.1001066
  4. 4.
    Naini A, Shanske S (2007) Detection of mutations in mtDNA. Methods Cell Biol 80:437–463. doi: 10.1016/S0091-679X(06)80022-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Naue J, Sanger T, Schmidt U, Klein R, Lutz-Bonengel S (2011) Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing. Int J Legal Med 125(3):427–436. doi: 10.1007/s00414-011-0549-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Vandewoestyne M, Heindryckx B, Lepez T, Van Coster R, Gerris J, De Sutter P, Deforce D (2011) Polar body mutation load analysis in a patient with A3243G tRNALeu(UUR) point mutation. Mitochondrion 11(4):626–629. doi: 10.1016/j.mito.2011.03.123 PubMedCrossRefGoogle Scholar
  7. 7.
    Metzker ML (2010) Sequencing technologies-the next generation. Nat Rev Genet 11(1):31–46. doi: 10.1038/nrg2626 PubMedCrossRefGoogle Scholar
  8. 8.
    Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87(2):237–249. doi: 10.1016/j.ajhg.2010.07.014 PubMedCrossRefGoogle Scholar
  9. 9.
    Tang S, Huang T (2010) Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. Biotechniques 48(4):287–296. doi: 10.2144/000113389 PubMedCrossRefGoogle Scholar
  10. 10.
    Zaragoza MV, Fass J, Diegoli M, Lin D, Arbustini E (2010) Mitochondrial DNA variant discovery and evaluation in human Cardiomyopathies through next-generation sequencing. PLoS One 5(8):e12295. doi: 10.1371/journal.pone.0012295 PubMedCrossRefGoogle Scholar
  11. 11.
    Walker UA, Collins S, Byrne E (1996) Respiratory chain encephalomyopathies: a diagnostic classification. Eur Neurol 36(5):260–267PubMedCrossRefGoogle Scholar
  12. 12.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. doi: 10.1038/nature03959 PubMedGoogle Scholar
  13. 13.
    Ramos A, Santos C, Alvarez L, Nogues R, Aluja MP (2009) Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis 30(9):1587–1593. doi: 10.1002/elps.200800601 PubMedCrossRefGoogle Scholar
  14. 14.
    Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26(3):401–402. doi: 10.1093/bioinformatics/btp666 PubMedCrossRefGoogle Scholar
  15. 15.
    Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35(Database issue):D823–D828. doi: 10.1093/nar/gkl927 PubMedCrossRefGoogle Scholar
  16. 16.
    van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–E394. doi: 10.1002/humu.20921 PubMedCrossRefGoogle Scholar
  17. 17.
    Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021–1029. doi: 10.1007/s11064-008-9865-8 PubMedCrossRefGoogle Scholar
  18. 18.
    Kato M, Nakamura M, Ichiba M, Tomiyasu A, Shimo H, Higuchi I, Ueno S, Sano A (2011) Mitochondrial DNA deletion mutations in patients with neuropsychiatric symptoms. Neurosci Res 69(4):331–336. doi: 10.1016/j.neures.2010.12.013 PubMedCrossRefGoogle Scholar
  19. 19.
    Remes AM, Karppa M, Moilanen JS, Rusanen H, Hassinen IE, Majamaa K, Uimonen S, Sorri M, Salmela PI, Karvonen SL (2003) Epidemiology of the mitochondrial DNA 8344A > G mutation for the myoclonus epilepsy and ragged red fibres (MERRF) syndrome. J Neurol Neurosurg Psychiatry 74(8):1158–1159PubMedCrossRefGoogle Scholar
  20. 20.
    Molnar MJ, Perenyi J, Siska E, Nemeth G, Nagy Z (2009) The typical MERRF (A8344G) mutation of the mitochondrial DNA associated with depressive mood disorders. J Neurol 256(2):264–265. doi: 10.1007/s00415-009-0841-2 PubMedCrossRefGoogle Scholar
  21. 21.
    Hirano M, Ricci E, Koenigsberger MR, Defendini R, Pavlakis SG, DeVivo DC, DiMauro S, Rowland LP (1992) Melas: an original case and clinical criteria for diagnosis. Neuromuscul Disord 2(2):125–135PubMedCrossRefGoogle Scholar
  22. 22.
    Gronlund MA, Honarvar AK, Andersson S, Moslemi AR, Oldfors A, Holme E, Tulinius M, Darin N (2010) Ophthalmological findings in children and young adults with genetically verified mitochondrial disease. Br J Ophthalmol 94(1):121–127. doi: 10.1136/bjo.2008.154187 PubMedCrossRefGoogle Scholar
  23. 23.
    Hsieh RH, Li JY, Pang CY, Wei YH (2001) A novel mutation in the mitochondrial 16S rRNA gene in a patient with MELAS syndrome, diabetes mellitus, hyperthyroidism and cardiomyopathy. J Biomed Sci 8(4):328–335PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Marcelo Andrés Kauffman
    • 1
    • 2
  • Dolores González-Morón
    • 1
  • Damián Consalvo
    • 3
  • Gastón Westergaard
    • 4
  • Martín Vazquez
    • 4
  • Estefanía Mancini
    • 4
  • Ana Lía Taratuto
    • 5
  • Raúl Rey
    • 6
  • Silvia Kochen
    • 2
    • 3
  1. 1.Consultorio de Neurogenética. Centro Universitario de Neurología JM Ramos MejíaBuenos AiresArgentina
  2. 2.IBCN Eduardo de Robertis, Facultad de MedicinaUBA-CONICETBuenos AiresArgentina
  3. 3.Centro de EpilepsiaCentro Universitario de Neurología JM Ramos MejíaBuenos AiresArgentina
  4. 4.INDEAR, Ocampo y EsmeraldaRosarioArgentina
  5. 5.Departamento NeuropatologíaFLENIBuenos AiresArgentina
  6. 6.Centro Universitario de Neurología JM Ramos MejíaBuenos AiresArgentina

Personalised recommendations