Molecular Biology Reports

, Volume 39, Issue 5, pp 5589–5598 | Cite as

Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus)

  • Ran Dang
  • Jun-Quan Zhu
  • Fu-Qing Tan
  • Wei Wang
  • Hong Zhou
  • Wan-Xi Yang


KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5′ untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3′ UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.


ot-KIF3B Spermiogenesis Kinesin Octopus Testis 



We would like to thank all the members of the Sperm Laboratory at Zhejiang University. We are also grateful to Mr. Jia-Qiang Yan and other members in Professor Zhu Jun-Quan’s laboratory at Ningbo University for materials preparation. This project was supported in part by: (1) Zhejiang Provincial Natural Science Foundation of China (Grant No Z307536 and Y2100296); (2) National Natural Science Foundation of China, Grant number: No. 31072198 and 40776079; (3) K. C. Wong Magna Fund in Ningbo University; (4) the Scientific Research Foundation of Graduate School of Ningbo University (Grant No NG09JLA013).

Supplementary material

11033_2011_1363_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1,579 kb)


  1. 1.
    Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436PubMedCrossRefGoogle Scholar
  2. 2.
    Wang R, Sperry AO (2008) Identification of a novel leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids. BMC Cell Biol 9:9PubMedCrossRefGoogle Scholar
  3. 3.
    Zhu JQ, Yang WX, You ZJ, Jiao HF (2005) The ultrastructure of the spermatozoon of Octopus tankahkeei. J Shellfish Res 24:1203–1207Google Scholar
  4. 4.
    Zhu JQ, Yang WX, You ZJ, Wang W, Jiao HF (2006) Ultrastructure of spermatogenesis of Octopus tankahkeei. J Fish China 30:161–169CrossRefGoogle Scholar
  5. 5.
    Jiao HF, You ZJ, Wang YN (2008) Study on the foundational biological character of Octopus tankahkeei. Acta Oceanol Sinica 5:90–95Google Scholar
  6. 6.
    Li Z, Zhu JQ, Yang WX (2010) Acrosome reaction in Octopus tankahkeei induced by calcium ionophore A23187 and a possible role of the acrosomal screw. Micron 41:39–46PubMedCrossRefGoogle Scholar
  7. 7.
    Yu HM, Wang W, Zhu JQ, Yang WX (2010) Analysis on dynamic distribution and function of microtubule during Octopus tankahkeei spermiogenesis. Chin Cell Biol 32:251–255Google Scholar
  8. 8.
    Berezuk MA, Schroer TA (2004) Fractionation and characterization of kinesin II species in vertebrate brain. Traffic 5:503–513PubMedCrossRefGoogle Scholar
  9. 9.
    Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526PubMedCrossRefGoogle Scholar
  10. 10.
    Hirokawa N (2000) Stirring up development with the heterotrimeric kinesin KIF3. Traffic 1:29–34PubMedCrossRefGoogle Scholar
  11. 11.
    Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22PubMedCrossRefGoogle Scholar
  12. 12.
    Marszalek JR, Goldstein LS (2000) Understanding the functions of kinesin-II. Biochim Biophys Acta 1496:142–150PubMedCrossRefGoogle Scholar
  13. 13.
    Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476PubMedCrossRefGoogle Scholar
  14. 14.
    Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98:7004–7011PubMedCrossRefGoogle Scholar
  15. 15.
    Navone F, Consalez GG, Sardella M, Caspani E, Pozzoli O, Frassoni C, Morlacchi E, Sitia R, Sprocati T, Cabibbo A (2001) Expression of KIF3C kinesin during neural development and in vitro neuronal differentiation. J Neurochem 77:741–753PubMedCrossRefGoogle Scholar
  16. 16.
    Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N (1992) Kinesin family in murine central nervous system. J Cell Biol 119:1287–1296PubMedCrossRefGoogle Scholar
  17. 17.
    Cole DG, Chinn SW, Wedaman KP, Hall K, Vuong T, Scholey JM (1993) Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366:268–270PubMedCrossRefGoogle Scholar
  18. 18.
    Yamazaki H, Nakata T, Okada Y, Hirokawa N (1995) KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J Cell Biol 130:1387–1399PubMedCrossRefGoogle Scholar
  19. 19.
    Wedaman KP, Meyer DW, Rashid DJ, Cole DG, Scholey JM (1996) Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex. J Cell Biol 132:371–380PubMedCrossRefGoogle Scholar
  20. 20.
    Nishimura T, Kato K, Yamaguchi T, Fukata Y, Ohno S, Kaibuchi K (2004) Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol 6:328–334PubMedCrossRefGoogle Scholar
  21. 21.
    Shi SH, Cheng T, Jan LY, Jan YN (2004) APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14:2025–2032PubMedCrossRefGoogle Scholar
  22. 22.
    Brown CL, Maier KC, Stauber T, Ginkel LM, Wordeman L, Vernos I, Schroer TA (2005) Kinesin-2 is a motor for late endosomes and lysosomes. Traffic 6:1114–1124PubMedCrossRefGoogle Scholar
  23. 23.
    Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T (2006) Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem 281:4094–4099PubMedCrossRefGoogle Scholar
  24. 24.
    Stauber T, Simpson JC, Pepperkok R, Vernos I (2006) A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 16:2245–2251PubMedCrossRefGoogle Scholar
  25. 25.
    Schonteich E, Wilson GM, Burden J, Hopkins CR, Anderson K, Goldenring JR, Prekeris R (2008) The Rip11/Rab11-FIP5 and kinesin II complex regulates endocytic protein recycling. J Cell Sci 121:3824–3833PubMedCrossRefGoogle Scholar
  26. 26.
    Ocbina PJ, Anderson KV (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 37:2030–2038CrossRefGoogle Scholar
  27. 27.
    Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837PubMedCrossRefGoogle Scholar
  28. 28.
    Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125:33–45PubMedCrossRefGoogle Scholar
  29. 29.
    Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC (2003) IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278:34211–34218PubMedCrossRefGoogle Scholar
  30. 30.
    Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM (2005) Functional coordination of intraflagellar transport motors. Nature 436:583–587PubMedCrossRefGoogle Scholar
  31. 31.
    Pan X, Ou G, Civelekoglu-Scholey G, Blacque OE, Endres NF, Tao L, Mogilner A, Leroux MR, Vale RD, Scholey JM (2006) Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J Cell Biol 174:1035–1045PubMedCrossRefGoogle Scholar
  32. 32.
    Scholey JM (2008) Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol 180:23–29PubMedCrossRefGoogle Scholar
  33. 33.
    Serra R (2008) Role of intraflagellar transport and primary cilia in skeletal development. Anat Rec (Hoboken) 291:1049–1061CrossRefGoogle Scholar
  34. 34.
    Wang W, Zhu JQ, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (ot-kifc1) from Octopus tankahkeei. Comp Biochem Physiol B Biochem Mol Biol 156:174–182PubMedCrossRefGoogle Scholar
  35. 35.
    Wang W, Zhu JQ, Yu HM, Tan FQ, Yang WX (2010) KIFC1-like motor protein associates with the cephalopod manchette and participates in sperm nuclear morphogenesis in Octopus tankahkeei. Plos One 5:1–11Google Scholar
  36. 36.
    Wang W, Dang R, Zhu JQ, Yang WX (2010) Identification and dynamic transcription of KIF3A homologue gene in spermiogenesis of Octopus tankahkeei. Comp Biochem Physiol A Mol Integr Physiol 157:237–245PubMedCrossRefGoogle Scholar
  37. 37.
    Franzén A (1967) Spermiogenesis and spermatozoa of the Cephalopoda. Ark Zool 19:323–334Google Scholar
  38. 38.
    Miller MG, Mulholland DJ, Vogl AW (1999) Rat testis motor proteins associated with spermatid translocation (dynein) and spermatid flagella (kinesin-II). Biol Reprod 60:1047–1056PubMedCrossRefGoogle Scholar
  39. 39.
    Navolanic PM, Sperry AO (2000) Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biol Reprod 62:1360–1369PubMedCrossRefGoogle Scholar
  40. 40.
    Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480PubMedCrossRefGoogle Scholar
  41. 41.
    Hirokawa N, Takemura R (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp Cell Res 301:50–59PubMedCrossRefGoogle Scholar
  42. 42.
    Seog DH, Lee DH, Lee SK (2004) Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J Korean Med Sci 19:1–7PubMedCrossRefGoogle Scholar
  43. 43.
    Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Natl Rev Mol Cell Biol 10:682–696CrossRefGoogle Scholar
  44. 44.
    Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Natl Rev Mol Cell Biol 10:765–777CrossRefGoogle Scholar
  45. 45.
    Noda Y, Okada Y, Saito N, Setou M, Xu Y, Zhang Z, Hirokawa N (2001) KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol 155:77–88PubMedCrossRefGoogle Scholar
  46. 46.
    Bernasconi P, Cappelletti C, Navone F, Nessi V, Baggi F, Vernos I, Romaggi S, Confalonieri P, Mora M, Morandi L, Mantegazza R (2008) The kinesin superfamily motor protein KIF4 is associated with immune cell activation in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 67:624–632PubMedCrossRefGoogle Scholar
  47. 47.
    Sperry AO, Zhao LP (1996) Kinesin-related proteins in the mammalian testes: candidate motors for meiosis and morphogenesis. Mol Biol Cell 7:289–305PubMedGoogle Scholar
  48. 48.
    Zou Y, Millette CF, Sperry AO (2002) KRP3A and KRP3B: candidate motors in spermatid maturation in the seminiferous epithelium. Biol Reprod 66:843–855PubMedCrossRefGoogle Scholar
  49. 49.
    Yang WX, Sperry AO (2003) C-Terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729PubMedCrossRefGoogle Scholar
  50. 50.
    Wang DH, Yang WX (2010) Molecular cloning and characterization of KIFC1-like kinesin gene (es-KIFC1) in the testis of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 157:123–131PubMedCrossRefGoogle Scholar
  51. 51.
    Bray JD, Chennathukuzhi VM, Hecht NB (2004) KIF2Aβ: a kinesin family member enriched in mouse male germ cells, interacts with translin associated factor-X (TRAX). Mol Reprod Dev 69:387–396PubMedCrossRefGoogle Scholar
  52. 52.
    Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN, Margolis B, Martens JR, Verhey KJ (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-Β2 and RanGTP. Nat Cell Biol 12:703–710PubMedCrossRefGoogle Scholar
  53. 53.
    Yang WX, Jefferson H, Sperry AO (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 74:684–690PubMedCrossRefGoogle Scholar
  54. 54.
    Yu KM, Hou L, Zhu JQ, Ying XP, Yang WX (2009) KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res 337:113–123PubMedCrossRefGoogle Scholar
  55. 55.
    Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125:1095–1107PubMedCrossRefGoogle Scholar
  56. 56.
    Henson JH, Cole DG, Roesener CD, Capuano S, Mendola RJ, Scholey JM (1997) The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. Cell Motil Cytoskelet 38:29–37CrossRefGoogle Scholar
  57. 57.
    Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008PubMedCrossRefGoogle Scholar
  58. 58.
    Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633PubMedCrossRefGoogle Scholar
  59. 59.
    Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443PubMedCrossRefGoogle Scholar
  60. 60.
    Kierszenbaum AL (2002) Intramanchette transport (IMT): managing the making of the spermatid head, centrosome and tail. Mol Reprod Dev 63:1–4PubMedCrossRefGoogle Scholar
  61. 61.
    Martínez-Soler F, Kurtz K, Chiva M (2007) Sperm nucleomorphogenesis in the cephalopod Sepia officinalis. Tissue Cell 39:99–108PubMedCrossRefGoogle Scholar
  62. 62.
    Sun X, Yang WX (2010) Mitochondria: transportation, distribution and function during spermiogenesis. Adv Biosci Biotechnol 1:97–109CrossRefGoogle Scholar
  63. 63.
    Cho KI, Cai Y, Yi H, Yeh A, Aslanukov A, Ferreira PA (2007) Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8:1722–1735PubMedCrossRefGoogle Scholar
  64. 64.
    Cai Q, Gerwin C, Sheng ZH (2005) Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 170:959–969PubMedCrossRefGoogle Scholar
  65. 65.
    Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557PubMedCrossRefGoogle Scholar
  66. 66.
    Mruk DD, Cheng CY (2004) Sertoli–Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806PubMedCrossRefGoogle Scholar
  67. 67.
    Ruwanpura SM, McLachlan RI, Meachem SJ (2010) Hormonal regulation of male germ cell development. J Endocrinol 205:117–131PubMedCrossRefGoogle Scholar
  68. 68.
    Marshall WF, Nonaka S (2006) Cilia: tuning into the cell’s antenna. Curr Biol 16(15):604–614CrossRefGoogle Scholar
  69. 69.
    Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signaling. Curr Top Dev Biol 85:23–61PubMedCrossRefGoogle Scholar
  70. 70.
    Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Reiter JF (2008) Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10(1):70–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ran Dang
    • 1
    • 2
  • Jun-Quan Zhu
    • 1
  • Fu-Qing Tan
    • 3
  • Wei Wang
    • 1
    • 2
  • Hong Zhou
    • 2
  • Wan-Xi Yang
    • 2
  1. 1.Faculty of Life Science and BioengineeringNingbo UniversityZhejiangPeople’s Republic of China
  2. 2.The Sperm Laboratory, College of Life SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations