Advertisement

Molecular Biology Reports

, Volume 39, Issue 4, pp 3799–3806 | Cite as

Analysis of gene expression profile of Arabidopsis genes under trichloroethylene stresses with the use of a full-length cDNA microarray

  • Bo Zhu
  • Ri-He Peng
  • Ai-Sheng Xiong
  • Xiao-Yan Fu
  • Wei Zhao
  • Yong-Sheng Tian
  • Xiao-Fen Jin
  • Yong Xue
  • Jing Xu
  • Hong-Juan Han
  • Chen Chen
  • Jian-Jie Gao
  • Quan-Hong Yao
Article

Abstract

Trichloroethylene (TCE) is a widespread and persistent environmental contaminant. Plants are able to take up a range of harmful organic compounds, including some of the most abundant environmental pollutants like TCE. In this study, complementary DNA microarrays were constructed to have a better view of transcript expression in Arabidopsis thaliana during TCE-induced stress. The microarray analysis demonstrated the complexity of gene expression patterns resulting from TCE. A total of 1,020 transcripts were differentially up-regulated by TCE. Those genes might specifically contribute to the TCE transformation, conjugation, and compartmentation in plant. This study provides informative preliminary data for more in-depth analyses of TCE tolerance in Arabidopsis thaliana.

Keywords

cDNA Microarray Trichloroethylene Arabidopsis thaliana Phytoremediation Gene expression 

Notes

Acknowledgments

The research was supported by Hi-tech Research and Development Program (863) of China (2008AA10Z401) and Shanghai Natural Science Foundation (11ZR1432600).

Supplementary material

11033_2011_1157_MOESM1_ESM.xls (176 kb)
Table S1.Significant genes up-regulated (≥ 2.0 folds and ≤ 10% cv) in response to TCE. (XLS 175 kb)
11033_2011_1157_MOESM2_ESM.xls (36 kb)
Table S2 Significant genes down-regulated (≤ -5.0 folds and ≤ 10% cv) in response to TCE. (XLS 36 kb)
11033_2011_1157_MOESM3_ESM.doc (56 kb)
Table S3 Number of genes involved in different functional groups up-regulated by TCE treatment. (DOC 56 kb)
11033_2011_1157_MOESM4_ESM.doc (42 kb)
Table S4 Number of genes involved in different functional groups down-regulated by TCE treatment. (DOC 42 kb)

References

  1. 1.
    Dekant W, Schulz A, Metzler M, Henschler D (1986) Absorption, elimination, and metabolism of trichloroethylene: a quantitative comparison between mice and rats. Xenobiotica 16:143PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson PD, Goldberg SJ, May MZ, Dawson BV (2003) Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environ Health Perspect 111:289–292PubMedCrossRefGoogle Scholar
  3. 3.
    Maltoni C, Lefemine G, Cotti G, Perino G (1988) Long-term carcinogenicity bioassays on trichloroethylene administered by inhalation to Sprague-Dawley rats and Swiss and B6C3F1 mice. Ann N Y Acad Sci 534:316–342PubMedCrossRefGoogle Scholar
  4. 4.
    NTP (National Toxicology Program) (1990) Carcinogenesis studies of trichloroethylene in F344/N rats and B6C3F1 mice. NTP Technical ReportGoogle Scholar
  5. 5.
    ATSDR (1997) US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Toxicologic profile for trichloroethyleneGoogle Scholar
  6. 6.
    Schroll R, Bierling B, Cao G, Dorfler U, Lahaniati M, Langenbach T, Scheunert I, Winkler R (1994) Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere 28:297–303CrossRefGoogle Scholar
  7. 7.
    Anderson TA, Walton BT (1995) Comparative fate of 14C TCE in the root zone of plants from a former solvent disposal site. Environ Toxicol Chem 14:2041–2047Google Scholar
  8. 8.
    Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658CrossRefGoogle Scholar
  9. 9.
    Aken BV, Correa PA, Chnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776PubMedCrossRefGoogle Scholar
  10. 10.
    Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055–1065PubMedCrossRefGoogle Scholar
  11. 11.
    Narayanan M, Davis LC, Erickson LE (1995) Fate of volatile chlorinated organic compounds in a laboratory chamber with alfalfa plants. Environ Sci Technol 29:2437–2444PubMedCrossRefGoogle Scholar
  12. 12.
    Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067CrossRefGoogle Scholar
  13. 13.
    Orchard BJ, Doucette WJ, Chard JK, Bugbee B (2000) Uptake of TCE by hybrid poplar trees grown hydroponically in flow through plant growth chambers. Environ Toxicol Chem 19:895–903CrossRefGoogle Scholar
  14. 14.
    Schuchardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H, Herzel H (2000) Normalization strategies for cDNA microarrays. Nucleic Acids Res 28:E47CrossRefGoogle Scholar
  15. 15.
    Deyholos M, Galbraith DW (2001) High-density microarrays for gene expression analysis. Cytometry 43:229–238PubMedCrossRefGoogle Scholar
  16. 16.
    Ensley BD (1991) Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol 45:283–299PubMedCrossRefGoogle Scholar
  17. 17.
    Lash LH, Fisher JW, Lipscomb JC, Parker JC (2000) Metabolism of trichloroethylene. Environ Health Perspect 108:177–200PubMedCrossRefGoogle Scholar
  18. 18.
    Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241PubMedCrossRefGoogle Scholar
  19. 19.
    Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84PubMedCrossRefGoogle Scholar
  20. 20.
    Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–469PubMedCrossRefGoogle Scholar
  21. 21.
    Ishikawa T, Li ZS, Lu YP, Rea PA (1997) The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression. Biosci Rep 17:189–207PubMedCrossRefGoogle Scholar
  22. 22.
    Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760PubMedCrossRefGoogle Scholar
  23. 23.
    Coleman J, Blake-Kalff M, Davies E (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151CrossRefGoogle Scholar
  24. 24.
    Schaffner A, Messner B, Langebartels C, Sandermann H (2002) Genes and enzymes for in-planta phytoremediation of air, water and soil. Acta Biotechnol 22:141–151CrossRefGoogle Scholar
  25. 25.
    Komives T, Gullner G (2005) Phase I xenobiotic metabolic systems in plants Z. Naturforsch 60:179–185Google Scholar
  26. 26.
    Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450–dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343PubMedCrossRefGoogle Scholar
  27. 27.
    Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692PubMedGoogle Scholar
  28. 28.
    Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89PubMedCrossRefGoogle Scholar
  29. 29.
    Yu L, Wan F, Dutta S, Welsh S, Liu ZH, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103:4952–4957PubMedCrossRefGoogle Scholar
  30. 30.
    Marrs K (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158PubMedCrossRefGoogle Scholar
  31. 31.
    Berhane K, Widersten M, Engstrom A, Kozarich JW, Mannervik B (1994) Detoxication of base propenals and other α, β-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci USA 91:1480–1484PubMedCrossRefGoogle Scholar
  32. 32.
    Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH (2003) The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 270:799–813PubMedCrossRefGoogle Scholar
  33. 33.
    Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307PubMedCrossRefGoogle Scholar
  34. 34.
    Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmaco Sci 27:587–593CrossRefGoogle Scholar
  35. 35.
    Vincent A, Chantal V, Catherine C, Jean-Claude K (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidiosis thaliana. Plant Sci 157:1–12CrossRefGoogle Scholar
  36. 36.
    Jean-Claude K (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2:66–70CrossRefGoogle Scholar
  37. 37.
    Martinez M, Rubio-Somoza I, Carbonero P, Diaz I (2003) A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. J Exp Bot 384:951–959CrossRefGoogle Scholar
  38. 38.
    Pinheiro C, Kehr J, Ricardo CP (2005) Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta 221:716–728PubMedCrossRefGoogle Scholar
  39. 39.
    Aharoni A, Vorst O (2002) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118PubMedCrossRefGoogle Scholar
  40. 40.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470PubMedCrossRefGoogle Scholar
  41. 41.
    Cui GH, Huang LQ, Tang XJ, Zhao JX (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bo Zhu
    • 1
  • Ri-He Peng
    • 1
  • Ai-Sheng Xiong
    • 1
  • Xiao-Yan Fu
    • 1
  • Wei Zhao
    • 1
  • Yong-Sheng Tian
    • 1
  • Xiao-Fen Jin
    • 1
  • Yong Xue
    • 1
  • Jing Xu
    • 1
  • Hong-Juan Han
    • 1
  • Chen Chen
    • 1
  • Jian-Jie Gao
    • 1
  • Quan-Hong Yao
    • 1
  1. 1.Shanghai Key Laboratory of Agricultural Genetics and BreedingAgro-Biotechnology Research Center, Shanghai Academy of Agricultural SciencesShanghaiPeople’s Republic of China

Personalised recommendations