Skip to main content
Log in

Analysis of gene expression profile of Arabidopsis genes under trichloroethylene stresses with the use of a full-length cDNA microarray

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Trichloroethylene (TCE) is a widespread and persistent environmental contaminant. Plants are able to take up a range of harmful organic compounds, including some of the most abundant environmental pollutants like TCE. In this study, complementary DNA microarrays were constructed to have a better view of transcript expression in Arabidopsis thaliana during TCE-induced stress. The microarray analysis demonstrated the complexity of gene expression patterns resulting from TCE. A total of 1,020 transcripts were differentially up-regulated by TCE. Those genes might specifically contribute to the TCE transformation, conjugation, and compartmentation in plant. This study provides informative preliminary data for more in-depth analyses of TCE tolerance in Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dekant W, Schulz A, Metzler M, Henschler D (1986) Absorption, elimination, and metabolism of trichloroethylene: a quantitative comparison between mice and rats. Xenobiotica 16:143

    Article  PubMed  CAS  Google Scholar 

  2. Johnson PD, Goldberg SJ, May MZ, Dawson BV (2003) Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environ Health Perspect 111:289–292

    Article  PubMed  CAS  Google Scholar 

  3. Maltoni C, Lefemine G, Cotti G, Perino G (1988) Long-term carcinogenicity bioassays on trichloroethylene administered by inhalation to Sprague-Dawley rats and Swiss and B6C3F1 mice. Ann N Y Acad Sci 534:316–342

    Article  PubMed  CAS  Google Scholar 

  4. NTP (National Toxicology Program) (1990) Carcinogenesis studies of trichloroethylene in F344/N rats and B6C3F1 mice. NTP Technical Report

  5. ATSDR (1997) US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry. Toxicologic profile for trichloroethylene

  6. Schroll R, Bierling B, Cao G, Dorfler U, Lahaniati M, Langenbach T, Scheunert I, Winkler R (1994) Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere 28:297–303

    Article  CAS  Google Scholar 

  7. Anderson TA, Walton BT (1995) Comparative fate of 14C TCE in the root zone of plants from a former solvent disposal site. Environ Toxicol Chem 14:2041–2047

    CAS  Google Scholar 

  8. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  9. Aken BV, Correa PA, Chnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  PubMed  Google Scholar 

  10. Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055–1065

    Article  PubMed  CAS  Google Scholar 

  11. Narayanan M, Davis LC, Erickson LE (1995) Fate of volatile chlorinated organic compounds in a laboratory chamber with alfalfa plants. Environ Sci Technol 29:2437–2444

    Article  PubMed  CAS  Google Scholar 

  12. Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  13. Orchard BJ, Doucette WJ, Chard JK, Bugbee B (2000) Uptake of TCE by hybrid poplar trees grown hydroponically in flow through plant growth chambers. Environ Toxicol Chem 19:895–903

    Article  CAS  Google Scholar 

  14. Schuchardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H, Herzel H (2000) Normalization strategies for cDNA microarrays. Nucleic Acids Res 28:E47

    Article  Google Scholar 

  15. Deyholos M, Galbraith DW (2001) High-density microarrays for gene expression analysis. Cytometry 43:229–238

    Article  PubMed  CAS  Google Scholar 

  16. Ensley BD (1991) Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol 45:283–299

    Article  PubMed  CAS  Google Scholar 

  17. Lash LH, Fisher JW, Lipscomb JC, Parker JC (2000) Metabolism of trichloroethylene. Environ Health Perspect 108:177–200

    Article  PubMed  CAS  Google Scholar 

  18. Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  PubMed  CAS  Google Scholar 

  19. Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  PubMed  CAS  Google Scholar 

  20. Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–469

    Article  PubMed  CAS  Google Scholar 

  21. Ishikawa T, Li ZS, Lu YP, Rea PA (1997) The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression. Biosci Rep 17:189–207

    Article  PubMed  CAS  Google Scholar 

  22. Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  PubMed  CAS  Google Scholar 

  23. Coleman J, Blake-Kalff M, Davies E (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  24. Schaffner A, Messner B, Langebartels C, Sandermann H (2002) Genes and enzymes for in-planta phytoremediation of air, water and soil. Acta Biotechnol 22:141–151

    Article  CAS  Google Scholar 

  25. Komives T, Gullner G (2005) Phase I xenobiotic metabolic systems in plants Z. Naturforsch 60:179–185

    CAS  Google Scholar 

  26. Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450–dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    Article  PubMed  CAS  Google Scholar 

  27. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    PubMed  CAS  Google Scholar 

  28. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  PubMed  CAS  Google Scholar 

  29. Yu L, Wan F, Dutta S, Welsh S, Liu ZH, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103:4952–4957

    Article  PubMed  CAS  Google Scholar 

  30. Marrs K (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  PubMed  CAS  Google Scholar 

  31. Berhane K, Widersten M, Engstrom A, Kozarich JW, Mannervik B (1994) Detoxication of base propenals and other α, β-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci USA 91:1480–1484

    Article  PubMed  CAS  Google Scholar 

  32. Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH (2003) The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 270:799–813

    Article  PubMed  CAS  Google Scholar 

  33. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307

    Article  PubMed  CAS  Google Scholar 

  34. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmaco Sci 27:587–593

    Article  CAS  Google Scholar 

  35. Vincent A, Chantal V, Catherine C, Jean-Claude K (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidiosis thaliana. Plant Sci 157:1–12

    Article  Google Scholar 

  36. Jean-Claude K (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2:66–70

    Article  Google Scholar 

  37. Martinez M, Rubio-Somoza I, Carbonero P, Diaz I (2003) A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. J Exp Bot 384:951–959

    Article  Google Scholar 

  38. Pinheiro C, Kehr J, Ricardo CP (2005) Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta 221:716–728

    Article  PubMed  CAS  Google Scholar 

  39. Aharoni A, Vorst O (2002) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118

    Article  PubMed  CAS  Google Scholar 

  40. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  PubMed  CAS  Google Scholar 

  41. Cui GH, Huang LQ, Tang XJ, Zhao JX (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Hi-tech Research and Development Program (863) of China (2008AA10Z401) and Shanghai Natural Science Foundation (11ZR1432600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Hong Yao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Peng, RH., Xiong, AS. et al. Analysis of gene expression profile of Arabidopsis genes under trichloroethylene stresses with the use of a full-length cDNA microarray. Mol Biol Rep 39, 3799–3806 (2012). https://doi.org/10.1007/s11033-011-1157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1157-8

Keywords

Navigation