Molecular Biology Reports

, Volume 39, Issue 3, pp 2991–2999 | Cite as

Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene in Saussurea medusa

  • Houhua Li
  • Jian Qiu
  • Fudong Chen
  • Xiaofen Lv
  • Chunxiang Fu
  • Dexiu Zhao
  • Xuejun Hua
  • Qiao Zhao


Dihydroflavonol 4-reductase (DFR), which catalyzes the reduction of dihydroflavonols to leucoanthocyanins, is a key enzyme in the biosynthesis of anthocyanidins, proanthocyanidins, and other flavonoids of importance in plant development and human nutrition. This study isolated a full length cDNA encoding DFR, designated as SmDFR (GenBank Accession No. EF600682), by screening a cDNA library from a red callus line of Saussurea medusa, which is an endangered, traditional Chinese medicinal plant with high pharmacological value. SmDFR was functionally expressed in yeast (Saccharomyces cerevisiae) to confirm that SmDFR can readily reduce dihydroquercetin (DHQ) and dihydrokampferol (DHK), but it could not reduce dihydromyricetin (DHM). The deduced SmDFR structure shared extensive sequence similarity with previously characterized plant DFRs and phylogenetic analysis showed that it belonged to the plant DFR super-family. SmDFR also possessed flavanone 4-reductase (FNR) activity and can catalyze the conversion of eridictyol to luteoforol. Real-time PCR analysis showed that the expression level of SmDFR was higher in flowers compared with both leaves and roots. This work greatly enhances our knowledge of flavonoid biosynthesis in S. medusa and marks a major advance that could facilitate future genetic modification of S. medusa.


Dihydroflavonol 4-reductase DFR Flavonoids Expression analysis Saussurea medusa 



Anthocyanidin synthase




Chalcone isomerase








Dihydroflavonol 4-reductase


High performance liquid chromatography-mass spectrometry


Flavanone 3-hydroxylase


Flavanonoid 3′ hydroxylase


Flavanone 4-reductase


Naphthaleneacetic Acid


Reduced nicotinamide adenine dinucleotide phosphate


Open reading frame


Phenylalanine ammonia-lyase


Untranslated region



This work was supported by the National Science Foundation of China (No. 30873452; 30701089). The authors thank Dr. Duncan E. Jackson for critical review and comments to improve the manuscript.

Supplementary material

11033_2011_1061_MOESM1_ESM.docx (262 kb)
Supplementary material 1 (DOCX 261 kb)


  1. 1.
    Li FX, Jin ZP, Zhao DX, Cheng LQ, Fu CX, Ma FS (2006) Overexpression of the Saussurea medusa chalcone isomerase gene in Saussurea involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67:553–560PubMedCrossRefGoogle Scholar
  2. 2.
    Law W, Salick J (2005) Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc Natl Acad Sci USA 102:10218–10220PubMedCrossRefGoogle Scholar
  3. 3.
    Takasaki M, Konoshima T, Komatsu K, Tokuda H, Nishino H (2000) Anti-tumor-promoting activity of lignans from the aerial part of Saussurea medusa. Cancer Lett 158:53–59PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao L, Wang X (2003) Research on chemical composition f pharmacology and its clinic application of Saussurea involucrata. J. Southwest National Coll 29:424–428Google Scholar
  5. 5.
    Fan CQ, Yue JM (2003) Biologically active phenols from Saussurea medusa. Bioorg Med Chem 11:703–708PubMedCrossRefGoogle Scholar
  6. 6.
    Jia JM, Wu CF, Liu W, Yu H, Hao Y, Zheng JH, Ji YR (2005) Antiinflammatory and analgesic activities of the tissue culture of Saussurea involucrata. Biol Pharm Bull 28:1612–1614PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng LQ, Xu YJ, Grotewold E, Jin ZP, Wu FY, Fu CX, Zhao DX (2007) Characterization of Anthocyanidin Synthase (ANS) Gene and anthocyanidin in rare medicinal plant-Saussurea medusa. Plant Cell Tiss Organ Cult 89:63–73CrossRefGoogle Scholar
  8. 8.
    Duan HQ, Takaishi Y, Momota H, Ohmoto Y, Taki T (2002) Immunosuppressive constituents from Saussurea medusa. Phytochemistry 59:85–90PubMedCrossRefGoogle Scholar
  9. 9.
    Almeida JRM, D’Amico E, Preuss A, Carbone F, de Vos CHR, Deiml B, Mourgues F, Perrotta G, Fischer TC, Bovy AG, Martens S, Rosati C (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria x ananassa). Arch Biochem Biophys 465:61–71PubMedCrossRefGoogle Scholar
  10. 10.
    Forkmann G, Heller W (1999) Biosynthesis of flavonoids. Compr Nat Prod Chem 1:713–748CrossRefGoogle Scholar
  11. 11.
    Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504PubMedCrossRefGoogle Scholar
  12. 12.
    Singh K, Kumar S, Yadav SK, Ahuja PS (2009) Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]. Plant Biotechnol Rep 3:95–101CrossRefGoogle Scholar
  13. 13.
    Mayr U, Michalek S, Treutter D, Feucht W (1997) Phenolic compounds of apple and their relationship to scab resistance. J Phytopathol–Phytopathol Z 145:69–75CrossRefGoogle Scholar
  14. 14.
    Khanizadeh S, Tsao R, Rekika D, Yang R, De Ell J (2007) Phenolic composition and antioxidant activity of selected apple genotypes. J Food Agricult Environ 5:61–66Google Scholar
  15. 15.
    Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer TC, Halbwirth H, Meisel B, Stich K, Forkmann G (2003) Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Arch Biochem Biophys 412:223–230PubMedCrossRefGoogle Scholar
  17. 17.
    Polashock JJ, Griesbach RJ, Sullivan RF, Vorsa N (2002) Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Sci 163:241–251CrossRefGoogle Scholar
  18. 18.
    Shimada N, Sasaki R, Sato S, Kaneko T, Tabata S, Aoki T, Ayabe S (2005) A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. J Exp Bot 56:2573–2585PubMedCrossRefGoogle Scholar
  19. 19.
    Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160PubMedCrossRefGoogle Scholar
  20. 20.
    Martens S, Teeri T, Forkmann G (2002) Heterologous expression of dihydroflavonol 4-reductases from various plants. Febs Lett 531:453–458PubMedCrossRefGoogle Scholar
  21. 21.
    Jin ZP, Grotewold E, Qu WQ, Fu GX, Zhao DX (2005) Cloning and characterization of a flavanone 3-hydroxylase gene from Saussurea medusa. DNA Seq 16:121–129PubMedCrossRefGoogle Scholar
  22. 22.
    Xing JM, Zhao DX, Li MY, Ye HC, Li GF, Li ZH (1998) Cell growth and flavonoids production in suspension culture of Saussurea medusa. Acta Botanica Sinica 40:836–841Google Scholar
  23. 23.
    Zhao DX, Qiao CL, Wang Y (1998) Cell culture and selection of high flavonoids-producing cell lines in Saussurea medusa. Acta Botanica Sinica 40:515–520Google Scholar
  24. 24.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research 0034CrossRefGoogle Scholar
  25. 25.
    Li HH, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254PubMedCrossRefGoogle Scholar
  26. 26.
    Lo Piero AR, Puglisi I, Petrone G (2006) Gene characterization, analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from Citrus sinensis (L.) Osbeck. Phytochemistry 67:684–695PubMedCrossRefGoogle Scholar
  27. 27.
    Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL (2004) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol 134:979–994PubMedCrossRefGoogle Scholar
  28. 28.
    Petit P, Granier T, d’Estaintot BL, Manigand C, Bathany K, Schmitter JM, Lauvergeat V, Hamdi S, Gallois B (2007) Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis. J Mol Biol 368:1345–1357PubMedCrossRefGoogle Scholar
  29. 29.
    Treutter D, Feucht W (1990) The pattern of flavan-3-ols in relation to scab resistance of apple cultivars. J Horticult Sci 65:511–517Google Scholar
  30. 30.
    Knekt P, Jarvinen R, Seppanen R, Heliovaara M, Teppo L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146:223–230PubMedGoogle Scholar
  31. 31.
    Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N, Burman AC (2009) Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anti-Cancer Ag Med Chem 9:138–161Google Scholar
  32. 32.
    Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325PubMedCrossRefGoogle Scholar
  33. 33.
    Shi M, Wang FS, Wu ZZ (2003) Synergetic anticancer effect of combined quercetin and recombinant adenoviral vector expressing human wild-type p53, GM-CSF and B7-1 genes on hepatocellular carcinoma cells in vitro. World J Gastroenterol 9:73–78PubMedGoogle Scholar
  34. 34.
    Szankowski I, Flachowsky H, Li HH, Halbwirth H, Treutter D, Regos I, Hanke MV, Stich K, Fischer TC (2009) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229:681–692PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Houhua Li
    • 1
    • 4
  • Jian Qiu
    • 1
  • Fudong Chen
    • 1
  • Xiaofen Lv
    • 1
  • Chunxiang Fu
    • 2
  • Dexiu Zhao
    • 1
  • Xuejun Hua
    • 1
  • Qiao Zhao
    • 3
  1. 1.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijingChina
  2. 2.Forage Improvement DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  3. 3.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  4. 4.College of ForestryNorthwest A&F UniversityYanglingChina

Personalised recommendations