Skip to main content
Log in

Single nucleotide polymorphisms of the purinergic 1 receptor are not associated with myocardial infarction in a Latvian population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The purinergic 1 receptor (P2RY1) has been implicated in development of heart disease and in individual pharmacodynamic response to anticoagulant therapies. However, the association of polymorphisms in the P2RY1 gene with myocardial infarction (MI), and its associated conditions, has yet to be reported in the literature. We evaluated seven known SNPs in P2RY1 for association with MI in a Latvian population. Seven independent parameters that are related to MI [body mass index (BMI), type 2 diabetes (T2D), angina pectoris, hypertension, hyperlipidemia, atrial fibrillation and heart failure] were investigated. No significant association with MI was observed for any of the polymorphisms. Those SNPs for which the P value was close to significance were located in coding or promoter regions. Intriguingly, carriers of the minor allele in the P2RY1 gene locus showed a tendency towards higher onset age for MI, suggesting a possible protective effect of these SNPs against MI or their contribution in progression as opposed to onset. Finally, a linkage disequilibrium (LD) plot was generated for these polymorphisms in the Latvian population. The results of this study suggest that the role of P2RY1 in individuals from Latvian population is likely to be principally involved in platelet aggregation and thromboembolic diseases, and not as a significant contributing factor to the global metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ayyanathan K, Webbs TE, Sandhu AK, Athwal RS, Barnard EA, Kunapuli SP (1996) Cloning and chromosomal localization of the human P2Y1 purinoceptor. Biochem Biophys Res Commun 218(3):783–788. doi:10.1016/j.tips.2006.01.005

    PubMed  CAS  Google Scholar 

  2. Janssens R, Communi D, Pirotton S, Samson M, Parmentier M, Boeynaems JM (1996) Cloning and tissue distribution of the human P2Y1 receptor. Biochem Biophys Res Commun 221(3):588–593

    PubMed  CAS  Google Scholar 

  3. Leon C, Vial C, Cazenave JP, Gachet C (1996) Cloning and sequencing of a human cDNA encoding endothelial P2Y1 purinoceptor. Gene 171(2):295–297. doi:10.1016/0378-1119(96)00027-3

    PubMed  CAS  Google Scholar 

  4. Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521(1–3):107–119

    PubMed  CAS  Google Scholar 

  5. Leon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest 104(12):1731–1737. doi:10.1172/JCI8399

    PubMed  CAS  Google Scholar 

  6. Malin SA, Molliver DC (2010) Gi- and Gq-coupled ADP (P2Y) receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior. Mol Pain 6:21. doi:10.1186/1744-8069-6-21

    PubMed  Google Scholar 

  7. Reiser G (1995) Ca(2+)- and nitric oxide-dependent stimulation of cyclic GMP synthesis in neuronal cell line induced by P2-purinergic/pyrimidinergic receptor. J Neurochem 64(1):61–68

    PubMed  CAS  Google Scholar 

  8. Ryten M, Yang SY, Dunn PM, Goldspink G, Burnstock G (2004) Purinoceptor expression in regenerating skeletal muscle in the mdx mouse model of muscular dystrophy and in satellite cell cultures. FASEB J 18(12):1404–1406. doi:10.1096/fj.03-1175fje03-1175fje

    PubMed  CAS  Google Scholar 

  9. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207. doi:10.1038/35051599

    PubMed  CAS  Google Scholar 

  10. Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2):289–297. doi:10.1016/S0092-8674(00)80983-6

    PubMed  CAS  Google Scholar 

  11. Mills DC, Robb IA, Roberts GC (1968) The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol 195(3):715–729

    PubMed  CAS  Google Scholar 

  12. Park HS, Hourani SM (1999) Differential effects of adenine nucleotide analogues on shape change and aggregation induced by adnosine 5-diphosphate (ADP) in human platelets. Br J Pharmacol 127(6):1359–1366. doi:10.1038/sj.bjp.0702690

    PubMed  CAS  Google Scholar 

  13. Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300. doi:10.1146/annurev.pharmtox.46.120604.141207

    PubMed  CAS  Google Scholar 

  14. Halbrugge M, Friedrich C, Eigenthaler M, Schanzenbacher P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 265(6):3088–3093

    PubMed  CAS  Google Scholar 

  15. Gurbel PA, O’Connor CM, Cummings CC, Serebruany VL (1999) Clopidogrel: the future choice for preventing platelet activation during coronary stenting? Pharmacol Res 40(2):107–111. doi:10.1006/phrs.1999.0478S1043-6618(99)90478-4

    PubMed  CAS  Google Scholar 

  16. Jauhar R, Bergman G, Savino S, Deutsch E, Shaknovich A, Parikh M, Sanborn TA (1999) Effectiveness of aspirin and clopidogrel combination therapy in coronary stenting. Am J Cardiol 84(6):726–728, A8

    Google Scholar 

  17. Azarpira N, Namazi S, Khalili A, Tabesh M (2010) The investigation of allele and genotype frequencies of CYP3A5 (1*/3*) and P2Y12 (T744C) in Iran. Mol Biol Rep. doi:10.1007/s11033-010-0628-7

  18. Fontana P, Dupont A, Gandrille S, Bachelot-Loza C, Reny JL, Aiach M, Gaussem P (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108(8):989–995. doi:10.1161/01.CIR.0000085073.69189.8801.CIR.0000085073.69189.88

    PubMed  CAS  Google Scholar 

  19. Fontana P, Gaussem P, Aiach M, Fiessinger JN, Emmerich J, Reny JL (2003) P2Y12 H2 haplotype is associated with peripheral arterial disease: a case–control study. Circulation 108(24):2971–2973. doi:10.1161/01.CIR.0000106904.80795.35

    PubMed  Google Scholar 

  20. Rudez G, Pons D, Leebeek F, Monraats P, Schrevel M, Zwinderman A, de Winter R, Tio R, Doevendans P, Jukema W, de Maat M (2008) Platelet receptor P2RY12 haplotypes predict restenosis after percutaneous coronary interventions. Hum Mutat 29(3):375–380. doi:10.1002/humu.20641

    PubMed  CAS  Google Scholar 

  21. Staritz P, Kurz K, Stoll M, Giannitsis E, Katus HA, Ivandic BT (2009) Platelet reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-ADP receptor gene. Int J Cardiol 133(3):341–345. doi:10.1016/j.ijcard.2007.12.118

    PubMed  Google Scholar 

  22. Gachet C, Leon C, Hechler B (2006) The platelet P2 receptors in arterial thrombosis. Blood Cells Mol Dis 36(2):223–227. doi:10.1016/j.bcmd.2005.12.024

    PubMed  CAS  Google Scholar 

  23. Rozalski M, Nocun M, Watala C (2005) Adenosine diphosphate receptors on blood platelets: potential new targets for antiplatelet therapy. Acta Biochim Pol 52(2):411–415

    PubMed  CAS  Google Scholar 

  24. Hetherington SL, Singh RK, Lodwick D, Thompson JR, Goodall AH, Samani NJ (2005) Dimorphism in the P2Y1 ADP receptor gene is associated with increased platelet activation response to ADP. Arterioscler Thromb Vasc Biol 25(1):252–257

    PubMed  CAS  Google Scholar 

  25. Fontana P, Remones V, Reny JL, Aiach M, Gaussem P (2005) P2Y1 gene polymorphism and ADP-induced platelet response. J Thromb Haemost 3(10):2349–2350. doi:10.1111/j.1538-7836.2005.01483.x

    PubMed  CAS  Google Scholar 

  26. Lev EI, Patel RT, Guthikonda S, Lopez D, Bray PF, Kleiman NS (2007) Genetic polymorphisms of the platelet receptors P2Y(12), P2Y(1) and GP IIIa and response to aspirin and clopidogrel. Thromb Res 119(3):355–360. doi:10.1016/j.thromres.2006.02.006

    PubMed  CAS  Google Scholar 

  27. Sibbing D, von Beckerath O, Schomig A, Kastrati A, von Beckerath N (2006) P2Y1 gene A1622G dimorphism is not associated with adenosine diphosphate-induced platelet activation and aggregation after administration of a single high dose of clopidogrel. J Thromb Haemost 4(4):912–914

    PubMed  CAS  Google Scholar 

  28. Li Q, Chen BL, Ozdemir V, Ji W, Mao YM, Wang LC, Lei HP, Fan L, Zhang W, Liu J, Zhou HH (2007) Frequency of genetic polymorphisms of COX1, GPIIIa and P2Y1 in a Chinese population and association with attenuated response to aspirin. Pharmacogenomics 8(6):577–586. doi:10.2217/14622416.8.6.577

    PubMed  CAS  Google Scholar 

  29. Jefferson BK, Foster JH, McCarthy JJ, Ginsburg G, Parker A, Kottke-Marchant K, Topol EJ (2005) Aspirin resistance and a single gene. Am J Cardiol 95(6):805–808

    PubMed  CAS  Google Scholar 

  30. Kunicki TJ, Williams SA, Nugent DJ, Harrison P, Segal HC, Syed A, Rothwell PM (2009) Lack of association between aspirin responsiveness and seven candidate gene haplotypes in patients with symptomatic vascular disease. Thromb Haemost 101(1):123–133

    PubMed  CAS  Google Scholar 

  31. Kunicki TJ, Williams SA, Salomon DR, Harrison P, Crisler P, Nakagawa P, Mondala TS, Head SR, Nugent DJ (2009) Genetics of platelet reactivity in normal, healthy individuals. J Thromb Haemost 7(12):2116–2122

    PubMed  CAS  Google Scholar 

  32. Storey RF, Melissa Thornton S, Lawrance R, Husted S, Wickens M, Emanuelsson H, Cannon CP, Heptinstall S, Armstrong M (2009) Ticagrelor yields consistent dose-dependent inhibition of ADP-induced platelet aggregation in patients with atherosclerotic disease regardless of genotypic variations in P2RY12, P2RY1, and ITGB3. Platelets 20(5):341–348

    PubMed  CAS  Google Scholar 

  33. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, Khoury MJ, Cohen B, Davey-Smith G, Grimshaw J, Scheet P, Gwinn M, Williamson RE, Zou GY, Hutchings K, Johnson CY, Tait V, Wiens M, Golding J, van Duijn C, McLaughlin J, Paterson A, Wells G, Fortier I, Freedman M, Zecevic M, King R, Infante-Rivard C, Stewart AF, Birkett N (2009) Strengthening the reporting of genetic association studies (STREGA): an extension of the strengthening the reporting of observational studies in epidemiology (STROBE) statement. J Clin Epidemiol 62(6):597–608

    PubMed  Google Scholar 

  34. Barrett JC (2009) Haploview: visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009(10). doi:10.1101/pdb.ip71

  35. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. doi:10.1093/bioinformatics/bth457bth457

    PubMed  CAS  Google Scholar 

  36. de Bakker PI (2009) Selection and evaluation of Tag-SNPs using Tagger and HapMap. Cold Spring Harb Protoc 2009(6). doi:10.1101/pdb.ip67

  37. Kirsten H, Dienst S, Emmrich F, Ahnert P (2006) CalcDalton: a tool for multiplex genotyping primer design for single-base extension reactions using cleavable primers. Biotechniques 40(2):158

    PubMed  CAS  Google Scholar 

  38. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. doi:10.1086/519795

    PubMed  CAS  Google Scholar 

  39. Gauderman WJ, Morrison JM (2006) QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. http://hydra.usc.edu/gxe

  40. Ecke D, Hanck T, Tulapurkar ME, Schafer R, Kassack M, Stricker R, Reiser G (2008) Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 409(1):107–116

    PubMed  CAS  Google Scholar 

  41. Chandler MP, Morgan EE, McElfresh TA, Kung TA, Rennison JH, Hoit BD, Young ME (2007) Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol Heart Circ Physiol 293(3):H1609–H1616

    PubMed  CAS  Google Scholar 

  42. Ahmed W, Malik M, Saeed I, Khan AA, Sadeque A, Kaleem U, Ahmed N, Ajmal M, Azam M, Qamar R (2010) Role of tissue plasminogen activator and plasminogen activator inhibitor polymorphism in myocardial infarction. Mol Biol Rep 38(4):2541–2548. doi:10.1007/s11033-010-0392-8

    PubMed  Google Scholar 

  43. Bronic A, Ferencak G, Zadro R, Stavljenic-Rukavina A, Bernat R (2009) Impact of FXIII-A Val34Leu polymorphism on coronary artery disease in Croatian patients. Mol Biol Rep 36(1):1–5. doi:10.1007/s11033-007-9144-9

    PubMed  CAS  Google Scholar 

  44. Jin B, Li Y, Ge-Shang QZ, Ni HC, Shi HM, Shen W (2010) Varied association of prothrombin G20210A polymorphism with coronary artery disease susceptibility in different ethnic groups: evidence from 15,041 cases and 21,507 controls. Mol Biol Rep 38(4):2371–2376. doi:10.1007/s11033-010-0370-1

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Latvian Council of Science (LZPSP10.0010.10.04) and Latvian Research Program (4VPP-2010-2/2.1). In addition, partial funding support was provided by the European Science Foundation (1DP/1.1.1.2.0/09/APIA/VIAA/150 to V.I., K.M., and R.P.) and the Swedish Research Council (H.B.S.). We acknowledge the Genome Database of Latvian Population, Latvian Biomedical Research and Study Centre for providing data and DNA samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vita Ignatovica or Janis Klovins.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatovica, V., Latkovskis, G., Peculis, R. et al. Single nucleotide polymorphisms of the purinergic 1 receptor are not associated with myocardial infarction in a Latvian population. Mol Biol Rep 39, 1917–1925 (2012). https://doi.org/10.1007/s11033-011-0938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0938-4

Keywords

Navigation